# Copyright 2020 Observational Health Data Sciences and Informatics
#
# This file is part of SkeletonCompartiveEffectStudy
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Create the exposure and outcome cohorts
#'
#' @details
#' This function will create the exposure and outcome cohorts following the definitions included in
#' this package.
#'
#' @param connectionDetails An object of type \code{connectionDetails} as created using the
#' \code{\link[DatabaseConnector]{createConnectionDetails}} function in the
#' DatabaseConnector package.
#' @param cdmDatabaseSchema Schema name where your patient-level data in OMOP CDM format resides.
#' Note that for SQL Server, this should include both the database and
#' schema name, for example 'cdm_data.dbo'.
#' @param cohortDatabaseSchema Schema name where intermediate data can be stored. You will need to have
#' write priviliges in this schema. Note that for SQL Server, this should
#' include both the database and schema name, for example 'cdm_data.dbo'.
#' @param cohortTable The name of the table that will be created in the work database schema.
#' This table will hold the exposure and outcome cohorts used in this
#' study.
#' @param oracleTempSchema Should be used in Oracle to specify a schema where the user has write
#' priviliges for storing temporary tables.
#' @param outputFolder Name of local folder to place results; make sure to use forward slashes
#' (/)
#' @param cohortVariableSetting Option to use custom covariates based on cohorts
#'
#' @export
createCohorts <- function(connectionDetails,
cdmDatabaseSchema,
cohortDatabaseSchema,
cohortTable = "cohort",
oracleTempSchema,
outputFolder,
cohortVariableSetting = NULL) {
if (!file.exists(outputFolder))
dir.create(outputFolder)
conn <- DatabaseConnector::connect(connectionDetails)
.createCohorts(connection = conn,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortDatabaseSchema = cohortDatabaseSchema,
cohortTable = cohortTable,
oracleTempSchema = oracleTempSchema,
outputFolder = outputFolder,
cohortVariableSetting = cohortVariableSetting)
# Check number of subjects per cohort:
ParallelLogger::logInfo("Counting cohorts")
sql <- SqlRender::loadRenderTranslateSql("GetCounts.sql",
"CovCoagEmaPrediction",
dbms = connectionDetails$dbms,
oracleTempSchema = oracleTempSchema,
cdm_database_schema = cdmDatabaseSchema,
work_database_schema = cohortDatabaseSchema,
study_cohort_table = cohortTable)
counts <- DatabaseConnector::querySql(conn, sql)
colnames(counts) <- SqlRender::snakeCaseToCamelCase(colnames(counts))
counts <- addCohortNames(counts)
utils::write.csv(counts, file.path(outputFolder, "CohortCounts.csv"), row.names = FALSE)
DatabaseConnector::disconnect(conn)
}
addCohortNames <- function(data, IdColumnName = "cohortDefinitionId", nameColumnName = "cohortName") {
pathToCsv <- system.file("settings", "CohortsToCreate.csv", package = "CovCoagEmaPrediction")
cohortsToCreate <- utils::read.csv(pathToCsv)
idToName <- data.frame(cohortId = c(cohortsToCreate$cohortId),
cohortName = c(as.character(cohortsToCreate$name)))
idToName <- idToName[order(idToName$cohortId), ]
idToName <- idToName[!duplicated(idToName$cohortId), ]
names(idToName)[1] <- IdColumnName
names(idToName)[2] <- nameColumnName
data <- merge(data, idToName, all.x = TRUE)
# Change order of columns:
idCol <- which(colnames(data) == IdColumnName)
if (idCol < ncol(data) - 1) {
data <- data[, c(1:idCol, ncol(data) , (idCol+1):(ncol(data)-1))]
}
return(data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.