# code to create the json prediction:
webApi <- "https://awsagunva1011.jnj.com:8443/WebAPI"
populationSettings <- list(PatientLevelPrediction::createStudyPopulationSettings(binary = T,
includeAllOutcomes = T,
firstExposureOnly = T,
washoutPeriod = 365,
removeSubjectsWithPriorOutcome = T,
priorOutcomeLookback = 99999,
requireTimeAtRisk = T,
minTimeAtRisk = 1824,
riskWindowStart = 1,
startAnchor = 'cohort start',
endAnchor = 'cohort start',
riskWindowEnd = 1825,
verbosity = 'INFO',
addExposureDaysToEnd = F,
addExposureDaysToStart = F))
modelList <- list(list("LassoLogisticRegressionSettings" = list("variance" = 0.01))
)
covariateSettings <- list(list(
list(
fnct = 'createCovariateSettings',
settings = FeatureExtraction::createCovariateSettings(
useDemographicsAgeGroup = T)
)
))
# resrictOutcomePops <- data.frame(outcomeId = c(16428,16435),
# populationSettingId = c(1,2))
# resrictModelCovs = data.frame(modelSettingId = c(1,1,2),
# covariateSettingId = c(1,2,1))
executionSettings <- list(washoutPeriod = 365,
minCovariateFraction = 0.00,
normalizeData = T,
testSplit = "stratified",
testFraction = 0.20,
splitSeed = 1000,
nfold = 3)
json <- createDevelopmentStudyJson(packageName = 'EmcDementiaPredictionBase',
packageDescription = 'A package to create the full dementia prediction models.',
createdBy = 'Henrik John',
organizationName = 'Erasmus MC',
targets = data.frame(targetId = c(22337),
cohortId = c(22337),
targetName = c('Target')),
outcomes = data.frame(outcomeId = c(7414),
cohortId = c(7414),
outcomeName = c('Outcome')),
populationSettings = populationSettings,
modelList = modelList,
covariateSettings = covariateSettings,
resrictOutcomePops = NULL,
resrictModelCovs = NULL,
executionSettings = executionSettings,
webApi = webApi,
outputLocation = 'D:/hjohn/DementiaBase',
jsonName = 'predictionAnalysisList.json')
specifications <- Hydra::loadSpecifications(file.path('D:/hjohn/DementiaBase', 'predictionAnalysisList.json'))
Hydra::hydrate(specifications = specifications, outputFolder = 'D:/hjohn/DementiaBase/EmcDementiaPredictionBase')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.