r2plo <- function(covparam_object, ...) {
# calling the appropriate estimation method / stcov type generic (class/sub)
UseMethod("r2plo", object = covparam_object)
}
# the regular to profiled log odds for semivariogram-weighted least squares
r2plo.svwls <- function(covparam_object, ...) {
UseMethod("r2plo.svwls", object = covparam_object)
}
# the svwls productsum r2plo
r2plo.svwls.productsum <- function(covparam_object, max_options) {
# giving covparam_object a new name
params <- covparam_object
# storing the spatial variance components
s_vc <- c(params[["s_de"]], params[["s_ie"]])
# computing the overall spatial variance
svar <- sum(s_vc)
# storing the temporal variance components
t_vc <- c(params[["t_de"]], params[["t_ie"]])
# computing the overall temporal variance
tvar <- sum(t_vc)
# storing the spatio-temporal variance components
st_vc <- c(params[["st_de"]], params[["st_ie"]])
# computing the overall spatio-temporal variance
stvar <- sum(st_vc)
# storing the overall variances
vc <- c(s_vc, t_vc, st_vc)
# computing the proportion of main effect variance
lambda <- (svar + tvar) / (svar + tvar + stvar)
# computing the proportion of main effect variance that is spatial
alpha <- svar / (svar + tvar)
# computing the proportion of spatial variance that is independent error
n_s <- params[["s_ie"]] / svar
# computing the proportion of temporal variance that is independent error
n_t <- params[["t_ie"]] / tvar
# computing the proportion of spatial-temporal that is independent error
n_st <- params[["st_ie"]] / stvar
# storing the profiled parameters
pparm <- c(lambda = lambda, alpha = alpha, n_s = n_s, n_t = n_t, n_st = n_st)
# storing the proportion of variance/spatial range/temporal range relative
# to their maximums
pparm <- c(
pparm,
var_prop = pmin(1, (svar + tvar + stvar) / max_options$max_v),
srange_prop = params[["s_range"]] / max_options$max_s_range,
trange_prop = params[["t_range"]] / max_options$max_t_range
)
# storing the logit of the profiled parameters
pparm <- log(pparm / (1 - pparm))
# returning the logit of the profiled parameters
return(pparm)
}
# the svwls sum with error r2plo
r2plo.svwls.sum_with_error <- function(covparam_object, max_options) {
# giving covparam_object a new name
params <- covparam_object
# storing the spatial variance components
s_vc <- c(params[["s_de"]], params[["s_ie"]])
# computing the overall spatial variance
svar <- sum(s_vc)
# storing the temporal variance components
t_vc <- c(params[["t_de"]], params[["t_ie"]])
# computing the overall temporal variance
tvar <- sum(t_vc)
# computing the spatio-temporal independent error
st_vc <- params[["st_ie"]]
# restoring it to make it clear this is the only parameter
stvar <- sum(st_vc)
# storing the overall variances
vc <- c(s_vc, t_vc, st_vc)
# computing the proportion of main effect variance
lambda <- (svar + tvar) / (svar + tvar + stvar)
# computing the proportion of main effect variance that is spatial
alpha <- svar / (svar + tvar)
# computing the proportion of spatial variance that is independent error
n_s <- params[["s_ie"]] / svar
# computing the proportion of temporal variance that is independent error
n_t <- params[["t_ie"]] / tvar
# storing the profiled parameters
pparm <- c(lambda = lambda, alpha = alpha, n_s = n_s, n_t = n_t)
# storing the proportion of variance/spatial range/temporal range relative
# to their maximums
pparm <- c(
pparm,
var_prop = pmin(1, (svar + tvar + stvar) / max_options$max_v),
srange_prop = params[["s_range"]] / max_options$max_s_range,
trange_prop = params[["t_range"]] / max_options$max_t_range
)
# storing the logit of the profiled parameters
pparm <- log(pparm / (1 - pparm))
# returning the logit of the profiled parameters
return(pparm)
}
# the svwls product r2plo
r2plo.svwls.product <- function(covparam_object, max_options) {
# giving covparam_object a new name
params <- covparam_object
# storing the profiled parameters
pparm <- c(v_s = params[["v_s"]], v_t = params[["v_t"]])
# storing the proportion of variance/spatial range/temporal range relative
# to their maximums
pparm <- c(
pparm,
var_prop = pmin(1, params[["st_de"]] / max_options$max_v),
srange_prop = params[["s_range"]] / max_options$max_s_range,
trange_prop = params[["t_range"]] / max_options$max_t_range
)
# storing the logit of the profiled parameters
pparm <- log(pparm / (1 - pparm))
# returning the logit of the profiled parameters
return(pparm)
}
# the regular to profiled log odds for semivariogram-weighted least squares
r2plo.reml <- function(covparam_object, ...) {
UseMethod("r2plo.reml", object = covparam_object)
}
# the reml productsum r2plo
r2plo.reml.productsum <- function(covparam_object, max_options) {
# giving covparam_object a new name
params <- covparam_object
# storing the spatial variance components
s_vc <- c(params[["s_de"]], params[["s_ie"]])
# computing the overall spatial variance
svar <- sum(s_vc)
# storing the temporal variance components
t_vc <- c(params[["t_de"]], params[["t_ie"]])
# computing the overall temporal variance
tvar <- sum(t_vc)
# storing the spatio-temporal variance components
st_vc <- c(params[["st_de"]], params[["st_ie"]])
# computing the overall spatio-temporal variance
stvar <- sum(st_vc)
# storing the overall variances
vc <- c(s_vc, t_vc, st_vc)
# computing the proportion of main effect variance
lambda <- (svar + tvar) / (svar + tvar + stvar)
# computing the proportion of main effect variance that is spatial
alpha <- svar / (svar + tvar)
# computing the proportion of spatial variance that is independent error
n_s <- params[["s_ie"]] / svar
# computing the proportion of temporal variance that is independent error
n_t <- params[["t_ie"]] / tvar
# computing the proportion of spatial-temporal that is independent error
n_st <- params[["st_ie"]] / stvar
# storing the profiled parameters
pparm <- c(lambda = lambda, alpha = alpha, n_s = n_s, n_t = n_t, n_st = n_st)
# storing the proportion of spatial range/temporal range relative
# to their maximums
pparm <- c(
pparm,
srange_prop = params[["s_range"]] / max_options$max_s_range,
trange_prop = params[["t_range"]] / max_options$max_t_range
)
# storing the logit of the profiled parameters
pparm <- log(pparm / (1 - pparm))
# returning the logit of the profiled parameters
return(pparm)
}
# the reml sum with error r2plo
r2plo.reml.sum_with_error <- function(covparam_object, max_options) {
# giving covparam_object a new name
params <- covparam_object
# storing the spatial variance components
s_vc <- c(params[["s_de"]], params[["s_ie"]])
# computing the overall spatial variance
svar <- sum(s_vc)
# storing the temporal variance components
t_vc <- c(params[["t_de"]], params[["t_ie"]])
# computing the overall temporal variance
tvar <- sum(t_vc)
# computing the spatio-temporal independent error
st_vc <- params[["st_ie"]]
# restoring it to make it clear this is the only parameter
stvar <- sum(st_vc)
# storing the overall variances
vc <- c(s_vc, t_vc, st_vc)
# computing the proportion of main effect variance
lambda <- (svar + tvar) / (svar + tvar + stvar)
# computing the proportion of main effect variance that is spatial
alpha <- svar / (svar + tvar)
# computing the proportion of spatial variance that is independent error
n_s <- params[["s_ie"]] / svar
# computing the proportion of temporal variance that is independent error
n_t <- params[["t_ie"]] / tvar
# storing the profiled parameters
pparm <- c(lambda = lambda, alpha = alpha, n_s = n_s, n_t = n_t)
# storing the proportion of variance/spatial range/temporal range relative
# to their maximums
pparm <- c(
pparm,
srange_prop = params[["s_range"]] / max_options$max_s_range,
trange_prop = params[["t_range"]] / max_options$max_t_range
)
# storing the logit of the profiled parameters
pparm <- log(pparm / (1 - pparm))
# returning the logit of the profiled parameters
return(pparm)
}
# the reml product r2plo
r2plo.reml.product <- function(covparam_object, max_options) {
# giving covparam_object a new name
params <- covparam_object
# storing the profiled parameters
pparm <- c(v_s = params[["v_s"]], v_t = params[["v_t"]])
# storing the proportion of variance/spatial range/temporal range relative
# to their maximums
pparm <- c(
pparm,
srange_prop = params[["s_range"]] / max_options$max_s_range,
trange_prop = params[["t_range"]] / max_options$max_t_range
)
# storing the logit of the profiled parameters
pparm <- log(pparm / (1 - pparm))
# returning the logit of the profiled parameters
return(pparm)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.