R/prepare_cropland_tp1.R

Defines functions prepare_cropland_tp1

prepare_cropland_tp1 <- function(param) {
  stopifnot(inherits(param, "mapspamc_par"))
  cat("\n\n=> Prepare cropland")
  load_data(c("adm_map_r", "adm_list", "cl_mean", "cl_max", "cl_rank", "grid", "results_tp1"), param, local = TRUE, mess = FALSE)

  # Grid size
  grid_size <- calc_grid_size(grid)

  # Combine and remove few cells where gridID is missing, caused by masking grid with country borders using gdal.
  # df <- as.data.frame(raster::rasterToPoints(raster::stack(grid, cl_mean, cl_rank, cl_max, grid_size))) %>%
  #   dplyr::filter(!is.na(gridID))

  # Fix inconsistencies
  # Set cl_max to cl_mean if cl > cl_max because of inconsistencies (when using SASAM)
  # Set if cl_max or cl_mean are larger than grid_size set to grid_size
  df <- df %>%
    dplyr::mutate(
      cl_max = ifelse(cl_mean > cl_max, cl_mean, cl_max),
      cl_mean = ifelse(grid_size < cl_mean, grid_size, cl_mean),
      cl_max = ifelse(grid_size < cl_max, grid_size, cl_max)
    )

  # To harmonize with tp1 data we use the following rules:
  # lc > lc_tp1, we assume lc = lc_tp1
  # lc <= lc_tp1 <= lc_max, we assume lc = lc_tp1
  # lc_tp1 > lc_max, we assume lc = lc_max but still crop allocation needs to be rescaled accordingly
  # is.na(lc_tp1), we assume lc

  # Calculate total lc per gridID for spam tp1 and remove zero values
  cl_tp1 <- results_tp1 %>%
    dplyr::group_by(gridID) %>%
    dplyr::summarize(cl_tp1 = sum(pa, na.rm = T), .groups = "drop") %>%
    dplyr::filter(cl_tp1 != 0)

  # Add spam lc_tp1
  df <- df %>%
    dplyr::left_join(cl_tp1) %>%
    dplyr::mutate(
      cl_mean = dplyr::case_when(
        cl_max < cl_tp1 ~ cl_max,
        cl_mean <= cl_tp1 & cl_tp1 <= cl_max ~ cl_tp1,
        cl_mean > cl_tp1 ~ cl_tp1,
        is.na(cl_tp1) ~ cl_mean
      )
    ) %>%
    dplyr::select(-cl_tp1)

  # Remove gridID where cl_rank is NA
  df <- df %>%
    dplyr::filter(!is.na(cl_rank))

  # Set adm_level
  if (param$solve_level == 0) {
    adm_code_list <- unique(adm_list$adm0_code)
  } else {
    adm_code_list <- unique(adm_list$adm1_code)
  }

  # Save in line with solve level
  purrr::walk(adm_code_list, split_spatial, df, "cl", adm_map_r, param)
}
michielvandijk/mapspamc documentation built on April 17, 2025, 7:31 p.m.