#' Convert cluster to A/B genotype
#'
#' @export
cluster_to_AB <- function(x) {
y <- x
y[x == 1L] <- "BB"
y[x == 2L] <- "AB"
y[x == 3L] <- "AA"
y
}
#' Get call model
#'
#' Note that:
#'
#' * 1 means BB
#' * 2 means AB
#' * 3 means AA
#'
#' @export
get_call_model <- function() {
structure(list(call = NULL,
data = structure(c(NA_real_, NA_real_), .Dim = 1:2),
modelName = "VVV", n = NA_integer_, d = 2L,
G = 3L, BIC = NA_real_, loglik = NA_real_, df = 17, bic = NA_real_,
icl = NA_real_, hypvol = NA_real_, parameters = list(pro = c(0.500479788221025,
0.143228716138262, 0.356291495640446), mean = structure(c(6.96177672254813,
8.85489676984941, 8.98008865368302, 8.39050131899442, 9.48502667893542,
6.16325623969781), .Dim = 2:3, .Dimnames = list(c("x", "y"
), NULL)), variance = list(modelName = "VVV", d = 2L, G = 3L,
sigma = structure(c(0.183408627067186, 0.0587945717557889,
0.0587945717557889, 0.106750959122843, 0.532778894843797,
0.455477556606343, 0.455477556606343, 0.443235723673907,
0.122680156614798, 0.0661433759181621, 0.0661433759181621,
0.275258041926924), .Dim = c(2L, 2L, 3L), .Dimnames = list(
c("x", "y"), c("x", "y"), NULL)), cholsigma = structure(c(-0.428262334401692,
0, -0.137286347719391, 0.296485105616983, -0.729917046549672,
0, -0.62401276797054, 0.232042644967799, -0.350257272036996,
0, -0.188842263098468, 0.489486099490857), .Dim = c(2L,
2L, 3L), .Dimnames = list(c("x", "y"), c("x", "y"), NULL)))),
z = structure(c(NA_real_, NA_real_), .Dim = 1:2), classification = NA_real_,
uncertainty = NA_real_), class = "Mclust")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.