Description Usage Arguments Value Examples
This is a method for ggplot2::autoplot()
.
1 2 |
object |
A mirvie_learning_curve object
(i.e. the output of a call to |
metric |
A string. The metric used to evaluate the performance. |
smooth |
A flag. Use a loess smoothed line instead of joining the dots? |
meansd |
A flag. If there are multiple repeats, rather than plotting all of them, plot means with standard deviation error bars? |
... |
Arguments passed to |
A ggplot2::ggplot()
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | data("BostonHousing", package = "mlbench")
bh <- dplyr::select_if(BostonHousing, is.numeric)
model_evaluate <- function(training_data, testing_data) {
trained_mod <- lm(medv ~ ., training_data)
training_preds <- predict(trained_mod, newdata = training_data)
preds <- predict(trained_mod, newdata = testing_data)
c(
train = yardstick::mae_vec(training_data$medv, training_preds),
test = yardstick::mae_vec(testing_data$medv, preds)
)
}
mlc <- mlc0 <- suppressWarnings(
learn_curve(model_evaluate, bh, "medv",
training_fracs = c(seq(0.1, 0.7, 0.2), 0.85),
testing_frac = c(0.25, 0.5), repeats = 8,
strata = "medv"
)
)
suppressWarnings(print(autoplot(mlc, metric = "mae")))
suppressWarnings(print(autoplot(mlc, metric = "mae", smooth = TRUE)))
suppressWarnings(print(autoplot(mlc, metric = "mae", meansd = TRUE)))
suppressWarnings(
print(autoplot(mlc, metric = "mae", smooth = TRUE, meansd = TRUE))
)
mlc <- dplyr::filter(mlc0, testing_frac == 0.25)
suppressWarnings(print(autoplot(mlc, metric = "mae")))
suppressWarnings(print(autoplot(mlc, metric = "mae", smooth = TRUE)))
suppressWarnings(print(autoplot(mlc, metric = "mae", meansd = TRUE)))
suppressWarnings(
print(autoplot(mlc, metric = "mae", smooth = TRUE, meansd = TRUE))
)
mlc <- dplyr::filter(mlc0, rep == 1)
suppressWarnings(print(autoplot(mlc, metric = "mae")))
suppressWarnings(print(autoplot(mlc, metric = "mae", smooth = TRUE)))
mlc <- dplyr::filter(mlc0, rep == 1, testing_frac == 0.25)
suppressWarnings(print(autoplot(mlc, metric = "mae")))
suppressWarnings(print(autoplot(mlc, metric = "mae", smooth = TRUE)))
bh_split <- rsample::initial_split(bh, strata = medv)
bh_training <- rsample::training(bh_split)
bh_testing <- rsample::testing(bh_split)
mlc <- learn_curve(model_evaluate,
training_data = bh_training,
outcome = "medv", testing_data = bh_testing,
strata = "medv"
)
suppressWarnings(print(autoplot(mlc)))
suppressWarnings(print(autoplot(mlc, smooth = TRUE)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.