# data processing for generating a smaller version of RankCorr
#
# Author: mjskay
###############################################################################
library(dplyr)
library(coda)
# raw RankCorr mcmc.list
raw = readRDS(file.path("data-raw", "RankCorr.rds"))
# variable names to subset the chains to
var_names = grepl("(b\\[[1-3],[1-4]\\])|tau\\[[1-3]\\]|typical_r", dimnames(raw[[1]])[[2]])
# additional thinning to apply to the chains
thin_extra = 20
# subset the chains to only the desired variables and apply extra thinning
RankCorr = raw %>%
lapply(function(chain) {
chain[seq(1, nrow(chain), by = thin_extra), var_names] %>%
mcmc(mcpar(chain)[[1]], mcpar(chain)[[2]], mcpar(chain)[[3]] * thin_extra)
}) %>%
as.mcmc.list()
usethis::use_data(RankCorr, overwrite = TRUE, compress = 'xz')
RankCorr_u_tau = RankCorr %>%
tidybayes::spread_draws(u_tau[i]) %>%
as.data.frame()
usethis::use_data(RankCorr_u_tau, overwrite = TRUE, compress = 'xz')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.