audit.trail = function(models.path, models.name){
library(casal)
library(tidyverse)
for(i in 1:length(models.path)){
if(i == 1){
quantities <- extract.quantities(models.path[i])
my.df = data.frame(model = models.name[i],
year = quantities$SSBs$year,
SSB = quantities$"SSBs"$SSB)
} else {
quantities <- extract.quantities(models.path[i])
my.df = rbind(my.df,
data.frame(model = models.name[i],
year = quantities$SSBs$year,
SSB = quantities$"SSBs"$SSB))
}
}
# What is the minimum year (to determine B0) WARNINGS here we assume without checking that it is the same to all models!!!
min.year = min(my.df$year)
# What is the largest year common to all models (because we are comparing models biomass in the same year)
year.for.comp = as_tibble(my.df) %>% group_by(model) %>% summarise(max(year)) %>% ungroup() %>% summarise(min(`max(year)`))
# Select the data for B0 and Bcurrent
my.df.sub = as_tibble(my.df) %>% group_by(model) %>% filter(year %in% c(min.year, year.for.comp))
final.tibble = my.df.sub %>% spread(key = year, value = SSB) %>%
mutate(!!paste("B", year.for.comp,"/B0", sep="") := round(!!as.symbol(as.character(year.for.comp)) / !!as.symbol(min.year),2))
return(final.tibble)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.