| agreement_data | Agreement data for N=20 athletes |
| baseline_model | Baseline model |
| basic_arguments | Basic arguments |
| basketball_data | Basketball data |
| bench_press_data | Bench press data |
| bmbstats | Bootstrap Magnitude-based generic function |
| bmbstats-package | bmbstats: Bootstrap Magnitude-Based Statistics |
| bootstrap_MBI | Bootstrap magnitude based inference |
| bootstrap_MET | Bootstrap minimum effect tests (METs) |
| bootstrap_NHST | Bootstrap Null Hypothesis Significance Test |
| CLES | Common Language Effect Size (CLES) |
| cohens_d | Cohen's d for paired (dependent) and unpaired (independent)... |
| compare_dependent_groups | Compare two dependent groups |
| compare_independent_groups | Compare two independent groups |
| cost_functions | Cost functions |
| cv_model | Fit a 'cv_model' |
| data_estimators | Data estimators |
| data_estimators_robust | Data estimators (robust) |
| data_estimators_simple | Data estimators (simple) |
| density_mode | Finding Modes Using Kernel Density Estimates |
| dependent_groups_estimators | Dependent groups estimators |
| describe_data | Describe data |
| describe_relationship | Describe relationship between two dependent groups |
| func_num | Function or numeric |
| generic_predict | Predict using generic function |
| get_bootstrap_ci | Gets bootstrap confidence intervals |
| get_magnitude | Get Magnitude |
| height_data | Height data for N=100 athletes |
| independent_groups_estimators | Independent groups estimators |
| lm_model | Simple linear regression model |
| loss_functions | Loss functions |
| mb_proportions | Magnitude-based Proportions for Two Groups |
| mb_proportions_dependent | Magnitude-based Proportions for Two Dependent Groups |
| mb_proportions_independent | Magnitude-based Proportions for Two Independent Groups |
| mean_sd_h | Horizontal Mean +/- SD |
| mean_sd_v | Vertical Mean +/- SD |
| model_control | Model Control Constructor |
| observations_MBI | Magnitude-based inference using observations and known... |
| observations_MET | Minimum-effect tests using observations and known measurement... |
| OLP_regression | OLP regression |
| perfect_rnorm | Perfect Normal Distribution |
| performance_metrics | Performance metrics |
| plot.bmbstats | S3 method for plotting 'bmbstats' results |
| plot.bmbstats_cv_model | S3 method for plotting 'cv_model' results |
| plot.bmbstats_MBI | S3 method for plotting 'bootstrap_MBI' results |
| plot.bmbstats_MET | S3 method for plotting 'bootstrap_MET' results |
| plot.bmbstats_NHST | S3 method for plotting 'bootstrap_NHST' results |
| plot.bmbstats_observations_MBI | S3 method for plotting 'observations_MBI' results |
| plot.bmbstats_observations_MET | S3 method for plotting 'observations_MET' results |
| plot.bmbstats_RCT_analysis | S3 method for plotting 'RCT_analysis' results |
| plot.bmbstats_RCT_predict | S3 method for plotting 'RCT_predict' results |
| plot_control | Plot control constructor |
| plot_pair_BA | Bland-Altman plot |
| plot_pair_changes | Plot pair changes |
| plot_pair_lm | Linear model plot |
| plot_pair_OLP | Ordinary Least Products plot |
| plot_raincloud | Raincloud plot |
| plot_raincloud_SESOI | Raincloud plot with smallest effect size of interest |
| plot_spaghetti | Spaghetti plot |
| PPER | Proportion of Practically Equivalent Residuals |
| predict.bmbstats_cv_model | Predict from a 'cv_model' |
| predict.bmbstats_RCT_predict | S3 method for predicting 'RCT_predict' results |
| print.bmbstats | S3 method for printing 'bmbstats' results |
| print.bmbstats_cv_model | S3 method for printing 'cv_model' results |
| print.bmbstats_MBI | S3 method for printing 'bootstrap_MBI' results |
| print.bmbstats_MET | S3 method for printing 'bootstrap_MET' results |
| print.bmbstats_NHST | S3 method for printing 'bootstrap_NHST' results |
| print.bmbstats_observations_MBI | S3 method for printing 'observations_MBI' results |
| print.bmbstats_observations_MET | S3 method for printing 'observations_MET' results |
| print.bmbstats_RCT_analysis | S3 method for printing 'RCT_analysis' results |
| print.bmbstats_RCT_predict | S3 method for printing 'RCT_predict' results |
| RCT_analysis | RCT Analysis |
| RCT_estimators | RCT Estimators |
| RCT_estimators_lm | RCT Estimators - Simple Linear Regression approach |
| RCT_estimators_simple | RCT Estimators - Simple |
| RCT_predict | RCT Predict |
| relationship_lm_estimators | Dependent groups linear relationship estimators |
| reliability_analysis | Reliability Analysis |
| reliability_estimators | Reliability estimators |
| sd_pooled | Calculates pooled SD |
| SESOI_lower_dependent_func | SESOI lower threshold for 'compare_dependent_groups' |
| SESOI_lower_func | SESOI lower function |
| SESOI_lower_independent_func | SESOI lower threshold for 'compare_independent_groups' |
| SESOI_lower_RCT_func | SESOI lower threshold for RCT analysis |
| SESOI_lower_relationship_func | SESOI lower threshold for 'compare_dependent_groups' |
| SESOI_lower_reliability_func | SESOI lower threshold for 'reliability_analysis' |
| SESOI_lower_validity_func | SESOI lower threshold for 'validity_analysis' |
| SESOI_upper_dependent_func | SESOI upper threshold for 'compare_dependent_groups' |
| SESOI_upper_func | SESOI upper function |
| SESOI_upper_independent_func | SESOI upper threshold for 'compare_independent_groups' |
| SESOI_upper_RCT_func | SESOI upper threshold for RCT analysis |
| SESOI_upper_relationship_func | SESOI upper threshold for 'compare_dependent_groups' |
| SESOI_upper_reliability_func | SESOI upper threshold for 'reliability_analysis' |
| SESOI_upper_validity_func | SESOI upper threshold for 'validity_analysis' |
| standardize | Standardize numeric vector |
| validity_analysis | Validity Analysis |
| validity_estimators | Validity estimators |
| vertical_jump_data | Vertical jump data |
| weight_data | Weight data |
| yoyo_mas_data | YoYoIR1 and MAS data set |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.