Description Usage Arguments Examples
This method uses algebraic method assuming normal distribution of the residuals.
This is done by using sd
rather than RSE from
lm
model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | cost_MBE(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_MAE(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_MSE(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_RMSE(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_SSE(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_MinErr(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_MaxErr(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_MaxAbsErr(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_MaxSqErr(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_R_squared(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_SESOItoRMSE(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_PPER(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_MHE(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
cost_RMHE(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
|
observed |
Numeric vector |
predicted |
Numeric vector |
SESOI_lower |
Lower smallest effect size of interest threshold |
SESOI_upper |
Upper smallest effect size of interest threshold |
negative_weight |
How should negative residuals be weighted? Default is 1 |
positive_weight |
How should positive residuals be weighted? Default is 1 |
na.rm |
Should NAs be removed? Default is |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | data("yoyo_mas_data")
model <- lm(MAS ~ YoYoIR1, yoyo_mas_data)
observed <- yoyo_mas_data$MAS
predicted <- predict(model)
SESOI_lower <- -0.5
SESOI_upper <- 0.5
# Mean Squared Error
cost_MSE(
observed = observed,
predicted = predicted,
SESOI_lower = SESOI_lower,
SESOI_upper = SESOI_upper
)
# Mean Absolute Error
cost_MAE(
observed = observed,
predicted = predicted,
SESOI_lower = SESOI_lower,
SESOI_upper = SESOI_upper
)
# Root Mean Squared Error
cost_RMSE(
observed = observed,
predicted = predicted,
SESOI_lower = SESOI_lower,
SESOI_upper = SESOI_upper
)
# Bias
cost_MBE(
observed = observed,
predicted = predicted,
SESOI_lower = SESOI_lower,
SESOI_upper = SESOI_upper
)
# Sum of Squared Errors
cost_SSE(
observed = observed,
predicted = predicted,
SESOI_lower = SESOI_lower,
SESOI_upper = SESOI_upper
)
# Proportion of Practically Equivalent Residuals
cost_PPER(
observed = observed,
predicted = predicted,
SESOI_lower = SESOI_lower,
SESOI_upper = SESOI_upper
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.