Description Usage Arguments Examples
Loss functions
Quadratic loss
Absolute loss
Difference loss
Huber loss
Hinge loss
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | loss_quadratic(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
loss_absolute(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
loss_difference(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
loss_huber(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
na.rm = FALSE
)
loss_hinge(
observed,
predicted,
SESOI_lower = 0,
SESOI_upper = 0,
negative_weight = 1,
positive_weight = 1,
exponent = 1,
na.rm = FALSE
)
|
observed |
Numeric vector |
predicted |
Numeric vector |
SESOI_lower |
Lower smallest effect size of interest threshold |
SESOI_upper |
Upper smallest effect size of interest threshold |
negative_weight |
How should negative residuals be weighted? Default is 1 |
positive_weight |
How should positive residuals be weighted? Default is 1 |
na.rm |
Should NAs be removed? Default is |
exponent |
Numeric scalar. Default is 1. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | data("yoyo_mas_data")
model <- lm(MAS ~ YoYoIR1, yoyo_mas_data)
observed <- yoyo_mas_data$MAS
predicted <- predict(model)
SESOI_lower <- -0.5
SESOI_upper <- 0.5
# Square loss
loss_quadratic(
observed = observed,
predicted = predicted,
SESOI_lower = SESOI_lower,
SESOI_upper = SESOI_upper
)
# Absolute loss
loss_absolute(
observed = observed,
predicted = predicted,
SESOI_lower = SESOI_lower,
SESOI_upper = SESOI_upper
)
# Difference
loss_difference(
observed = observed,
predicted = predicted,
SESOI_lower = SESOI_lower,
SESOI_upper = SESOI_upper
)
# Huber loss
loss_huber(
observed = observed,
predicted = predicted,
SESOI_lower = SESOI_lower,
SESOI_upper = SESOI_upper
)
# Hinge loss
loss_hinge(
observed = observed,
predicted = predicted,
SESOI_lower = SESOI_lower,
SESOI_upper = SESOI_upper
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.