mlr_learners_regr.arima: Arima Forecast Learner

mlr_learners_regr.arimaR Documentation

Arima Forecast Learner

Description

ARIMA model Calls forecast::Arima from package forecast.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("forecast.arima")
lrn("forecast.arima")

Meta Information

  • Task type: “forecast”

  • Predict Types: “response”, “se”

  • Feature Types: “numeric”

  • Required Packages: mlr3, forecast

Parameters

Id Type Default Levels
order untyped c, 0, 0, 0
seasonal untyped c, 0, 0, 0
include.mean logical TRUE TRUE, FALSE
include.drift logical FALSE TRUE, FALSE
biasadj logical FALSE TRUE, FALSE
method character CSS-ML CSS-ML, ML, CSS

Super classes

mlr3::Learner -> mlr3temporal::LearnerForecast -> LearnerRegrForecastArima

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrForecastArima$new()

Method forecast()

Returns forecasts after the last training instance.

Usage
LearnerRegrForecastArima$forecast(h = 10, task, new_data = NULL)
Arguments
h

(numeric(1))
Number of steps ahead to forecast. Default is 10.

task

(Task).

new_data

(data.frame())
New data to predict on.

Returns

Prediction.


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrForecastArima$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

Other Learner: LearnerForecast, mlr_learners_regr.VAR, mlr_learners_regr.auto_arima, mlr_learners_regr.average

Examples

learner = mlr3::lrn("forecast.arima")
print(learner)

# available parameters:
learner$param_set$ids()

mlr-org/mlr3forecasting documentation built on June 29, 2023, 11:57 p.m.