mlr_learners_regr.auto_arima: Auto.Arima Forecast Learner

mlr_learners_regr.auto_arimaR Documentation

Auto.Arima Forecast Learner

Description

Auto ARIMA model Calls forecast::auto.arima from package forecast.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("forecast.auto_arima")
lrn("forecast.auto_arima")

Meta Information

  • Task type: “forecast”

  • Predict Types: “response”, “se”

  • Feature Types: “numeric”

  • Required Packages: mlr3, forecast

Parameters

Id Type Default Levels Range
d integer NA [0, \infty)
D integer NA [0, \infty)
max.q integer 5 [0, \infty)
max.p integer 5 [0, \infty)
max.P integer 2 [0, \infty)
max.Q integer 2 [0, \infty)
max.order integer 5 [0, \infty)
max.d integer 2 [0, \infty)
max.D integer 1 [0, \infty)
start.p integer 2 [0, \infty)
start.q integer 2 [0, \infty)
start.P integer 2 [0, \infty)
start.Q integer 2 [0, \infty)
stepwise logical FALSE TRUE, FALSE -
allowdrift logical TRUE TRUE, FALSE -
seasonal logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3temporal::LearnerForecast -> LearnerRegrForecastAutoArima

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrForecastAutoArima$new()

Method forecast()

Returns forecasts after the last training instance.

Usage
LearnerRegrForecastAutoArima$forecast(h = 10, task, new_data = NULL)
Arguments
h

(numeric(1))
Number of steps ahead to forecast. Default is 10.

task

(Task).

new_data

(data.frame())
New data to predict on.

Returns

Prediction.


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrForecastAutoArima$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

Other Learner: LearnerForecast, mlr_learners_regr.VAR, mlr_learners_regr.arima, mlr_learners_regr.average

Examples

learner = mlr3::lrn("forecast.auto_arima")
print(learner)

# available parameters:
learner$param_set$ids()

mlr-org/mlr3forecasting documentation built on June 29, 2023, 11:57 p.m.