mlr_resamplings_forecast_holdout: Forecast Holdout Resampling

mlr_resamplings_forecast_holdoutR Documentation

Forecast Holdout Resampling

Description

Splits data into a training set and a test set. Parameter ratio determines the ratio of observation going into the training set (default: 2/3).

Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

mlr_resamplings$get("forecast_cv")
rsmp("forecast_cv")

Parameters

  • ratio (numeric(1))
    Ratio of observations to put into the training set.

Super class

mlr3::Resampling -> ResamplingForecastHoldout

Public fields

iters

(integer(1))
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
ResamplingForecastHoldout$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
ResamplingForecastHoldout$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

Other resample: mlr_resamplings_forecast_cv

Examples

# Create a task with 10 observations
task = mlr3::tsk("airpassengers")
task$filter(1:10)

# Instantiate Resampling
rfho = mlr3::rsmp("forecast_holdout", ratio = 0.5)
rfho$instantiate(task)

# Individual sets:
rfho$train_set(1)
rfho$test_set(1)
intersect(rfho$train_set(1), rfho$test_set(1))

# Internal storage:
rfho$instance # simple list

mlr-org/mlr3forecasting documentation built on June 29, 2023, 11:57 p.m.