test_that("TunerBatchHyperband works", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 4, tags = "budget"))
)
test_tuner_hyperband(eta = 2, learner)
})
test_that("TunerBatchHyperband works with minimum budget > 1", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(2, 8, tags = "budget"))
)
test_tuner_hyperband(eta = 2, learner)
})
test_that("TunerBatchHyperband rounds budget", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 7, tags = "budget"))
)
test_tuner_hyperband(eta = 2, learner)
})
test_that("TunerBatchHyperband works with eta = 2.5", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 8, tags = "budget"))
)
test_tuner_hyperband(eta = 2.5, learner)
})
test_that("TunerBatchHyperband works with xgboost", {
skip_if_not_installed("mlr3learners")
skip_if_not_installed("xgboost")
library(mlr3learners) # nolint
learner = lrn("classif.xgboost",
nrounds = to_tune(p_int(1, 16, tags = "budget")),
eta = to_tune(1e-4, 1, logscale = TRUE),
max_depth = to_tune(1, 2))
test_tuner_hyperband(eta = 2, learner)
})
test_that("TunerBatchHyperband works with subsampling", {
skip_if_not_installed("mlr3pipelines")
library(mlr3pipelines)
graph_learner = as_learner(po("subsample") %>>% lrn("classif.debug"))
graph_learner$param_set$values$classif.debug.x = to_tune()
graph_learner$param_set$values$subsample.frac = to_tune(p_dbl(lower = 1/9, upper = 1, tags = "budget"))
test_tuner_hyperband(eta = 3, graph_learner)
})
test_that("TunerBatchHyperband works works with multi-crit", {
skip_if_not_installed("emoa")
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 4, tags = "budget"))
)
instance = test_tuner_hyperband(eta = 2, learner, measures = msrs(c("classif.ce", "classif.acc")))
expect_subset(min(instance$archive$data$classif.ce), instance$result$classif.ce)
expect_subset(max(instance$archive$data$classif.acc), instance$result$classif.acc)
})
test_that("TunerBatchHyperband works with custom sampler", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 4, tags = "budget"))
)
sampler = Sampler1DRfun$new(learner$param_set$search_space()$params[["x"]] %??% learner$param_set$search_space()$subset("x"), function(n) rbeta(n, 2, 5))
test_tuner_hyperband(eta = 2, learner, sampler = sampler)
})
test_that("TunerBatchHyperband errors if not enough parameters are sampled", {
learner = lrn("classif.debug",
x = to_tune(),
message_train = to_tune(),
iter = to_tune(p_int(1, 4, tags = "budget"))
)
sampler = Sampler1DRfun$new(learner$param_set$search_space()$params[["x"]] %??% learner$param_set$search_space()$subset("x"), function(n) rbeta(n, 2, 5))
expect_error(tune(
tnr( "hyperband", sampler = sampler),
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce")),
regexp = "set",
fixed = TRUE
)
})
test_that("TunerBatchHyperband errors if budget parameter is sampled", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 4, tags = "budget"))
)
sampler = SamplerJointIndep$new(list(
Sampler1DRfun$new(learner$param_set$search_space()$params[["x"]] %??% learner$param_set$search_space()$subset("x"), function(n) rbeta(n, 2, 5)),
Sampler1D$new(learner$param_set$search_space()$params[["iter"]] %??% learner$param_set$search_space()$subset("iter"))
))
expect_error(tune(
tnr( "hyperband", sampler = sampler),
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce")),
regexp = "set",
fixed = TRUE
)
})
test_that("TunerBatchHyperband errors if budget parameter is not numeric", {
learner = lrn("classif.debug",
x = to_tune(),
predict_missing_type = to_tune(p_fct(levels = c("na", "omit"), tags = "budget"))
)
expect_error(tune(
tnr( "hyperband"),
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce")),
regexp = "set",
fixed = TRUE
)
})
test_that("TunerBatchHyperband errors if multiple budget parameters are set", {
learner = lrn("classif.debug",
x = to_tune(p_dbl(0, 1, tags = "budget")),
iter = to_tune(p_int(1, 16, tags = "budget"))
)
expect_error(tune(
tnr( "hyperband"),
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce")),
regexp = "tagged ",
fixed = TRUE
)
})
test_that("TunerBatchHyperband minimizes measure", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 16, tags = "budget"))
)
instance = test_tuner_hyperband(eta = 2, learner, measures = msr("dummy", parameter_id = "x", minimize = TRUE))
expect_equal(min(instance$archive$data[bracket == 4 & stage == 0, dummy]),
instance$archive$data[bracket == 4 & stage == 4, dummy])
})
test_that("TunerBatchHyperband maximizes measure", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 16, tags = "budget"))
)
instance = test_tuner_hyperband(eta = 2, learner, measures = msr("dummy", parameter_id = "x", minimize = FALSE))
expect_equal(max(instance$archive$data[bracket == 4 & stage == 0, dummy]),
instance$archive$data[bracket == 4 & stage == 4, dummy])
})
test_that("TunerBatchHyperband works with single budget value", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 1, tags = "budget"))
)
test_tuner_hyperband(eta = 2, learner)
})
test_that("TunerBatchHyperband works with repetitions", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 16, tags = "budget"))
)
instance = tune(
tnr( "hyperband", repetitions = 2),
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"))
expect_equal(nrow(instance$archive$data), 144)
})
test_that("TunerBatchHyperband terminates itself", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 16, tags = "budget"))
)
instance = tune(
tnr( "hyperband"),
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"))
expect_equal(nrow(instance$archive$data), 72)
})
test_that("TunerBatchHyperband works with infinite repetitions", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 16, tags = "budget"))
)
instance = tune(
tnr( "hyperband", repetitions = Inf),
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
term_evals = 160)
expect_equal(nrow(instance$archive$data), 160)
})
test_that("TunerBatchHyperband man exists", {
expect_man_exists(tnr("hyperband")$man)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.