#' @title Keras Feed Forward Neural Network for Classification with a deep and wide part
#'
#' @usage NULL
#' @aliases mlr_learners_classif.deep_wide
#' @format [R6::R6Class()] inheriting from [mlr3keras::LearnerClassifKeras].
#'
#' @section Construction:
#' ```
#' LearnerClassifKerasDeepWide$new()
#' mlr3::mlr_learners$get("classif.deep_wide")
#' mlr3::lrn("classif.deep_wide")
#' ```
#' @template kerasff_description
#' @section More details:
#' This partially implements the architecture defined in Ericson et al., 2020 AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data.
#' Per default, two "dense blocks" of 256 and 128 units respectively are followed by the input activation.
#' This is concatenated with then connected to the wide part and fed into the output activation.
#' @template learner_methods
#' @template seealso_learner
#' @templateVar learner_name classif.deep_wide
#' @template example
#' @export
LearnerClassifKerasDeepWide = R6::R6Class("LearnerClassifKerasDeepWide",
inherit = LearnerClassifKeras,
public = list(
initialize = function() {
ps = ParamSet$new(list(
ParamLgl$new("use_embedding", default = TRUE, tags = c("train", "predict")),
ParamDbl$new("embed_dropout", default = 0, lower = 0, upper = 1, tags = "train"),
ParamDbl$new("embed_size", default = NULL, lower = 1, upper = Inf, tags = "train", special_vals = list(NULL)),
ParamUty$new("layer_units", default = c(32, 32, 32), tags = "train"),
ParamUty$new("initializer", default = "initializer_glorot_uniform()", tags = "train"),
ParamUty$new("regularizer", default = "regularizer_l1_l2()", tags = "train"),
ParamUty$new("optimizer", default = "optimizer_sgd()", tags = "train"),
ParamFct$new("activation", default = "relu", tags = "train",
levels = c("elu", "relu", "selu", "tanh", "sigmoid","PRelU", "LeakyReLu", "linear")),
ParamLgl$new("use_batchnorm", default = TRUE, tags = "train"),
ParamLgl$new("use_dropout", default = TRUE, tags = "train"),
ParamDbl$new("dropout", lower = 0, upper = 1, tags = "train"),
ParamDbl$new("input_dropout", lower = 0, upper = 1, tags = "train"),
ParamFct$new("loss", default = "categorical_crossentropy", tags = "train", levels = keras_reflections$loss$classif),
ParamFct$new("output_activation", levels = c("softmax", "linear", "sigmoid"), tags = "train"),
ParamUty$new("metrics", tags = "train")
))
ps$values = list(
use_embedding = TRUE, embed_dropout = 0, embed_size = NULL,
activation = "relu",
layer_units = c(128L, 256L),
initializer = initializer_glorot_uniform(),
optimizer = optimizer_adam(lr = 3*10^-4),
regularizer = regularizer_l1_l2(),
use_batchnorm = FALSE,
use_dropout = FALSE, dropout = 0, input_dropout = 0,
loss = "categorical_crossentropy",
metrics = "accuracy",
output_activation = "softmax"
)
arch = KerasArchitectureFF$new(build_arch_fn = build_keras_deep_wide_model, param_set = ps)
super$initialize(
feature_types = c("integer", "numeric", "factor", "ordered"),
man = "mlr3keras::mlr_learners_classif.deep_wide",
architecture = arch
)
}
)
)
#' @title Keras Feed Forward Neural Network for Regression with a deep and wide part
#'
#' @usage NULL
#' @aliases mlr_learners_regr.deep_wide
#' @format [R6::R6Class()] inheriting from [mlr3keras::LearnerRegrKeras].
#' @section Construction:
#' ```
#' LearnerRegrKerasDeepWide$new()
#' mlr3::mlr_learners$get("regr.deep_wide")
#' mlr3::lrn("regr.deep_wide")
#' ```
#' @template kerasff_description
#' @template learner_methods
#' @template seealso_learner
#' @templateVar learner_name regr.deep_wide
#' @template example
#' @export
LearnerRegrKerasDeepWide = R6::R6Class("LearnerRegrKerasDeepWide",
inherit = LearnerRegrKeras,
public = list(
initialize = function() {
ps = ParamSet$new(list(
ParamLgl$new("use_embedding", default = TRUE, tags = c("train", "predict")),
ParamDbl$new("embed_dropout", default = 0, lower = 0, upper = 1, tags = "train"),
ParamDbl$new("embed_size", default = NULL, lower = 1, upper = Inf, tags = "train", special_vals = list(NULL)),
ParamUty$new("layer_units", default = c(32, 32, 32), tags = "train"),
ParamUty$new("initializer", default = "initializer_glorot_uniform()", tags = "train"),
ParamUty$new("regularizer", default = "regularizer_l1_l2()", tags = "train"),
ParamUty$new("optimizer", default = "optimizer_sgd()", tags = "train"),
ParamFct$new("activation", default = "relu", tags = "train",
levels = c("elu", "relu", "selu", "tanh", "sigmoid","PRelU", "LeakyReLu", "linear")),
ParamLgl$new("use_batchnorm", default = TRUE, tags = "train"),
ParamLgl$new("use_dropout", default = TRUE, tags = "train"),
ParamDbl$new("dropout", lower = 0, upper = 1, tags = "train"),
ParamDbl$new("input_dropout", lower = 0, upper = 1, tags = "train"),
ParamFct$new("loss", default = "mean_squared_error", tags = "train", levels = keras_reflections$loss$regr),
ParamFct$new("output_activation", levels = c("linear", "sigmoid"), tags = "train"),
ParamUty$new("metrics", default = "mean_squared_logarithmic_error", tags = "train")
))
ps$values = list(
use_embedding = TRUE, embed_dropout = 0, embed_size = NULL,
activation = "relu",
layer_units = c(128L, 256L),
initializer = initializer_glorot_uniform(),
optimizer = optimizer_adam(lr = 3*10^-4),
regularizer = regularizer_l1_l2(),
use_batchnorm = FALSE,
use_dropout = FALSE, dropout = 0, input_dropout = 0,
loss = "mean_squared_error",
metrics = "mean_squared_logarithmic_error",
output_activation = "linear"
)
arch = KerasArchitectureFF$new(build_arch_fn = build_keras_deep_wide_model, param_set = ps)
super$initialize(
feature_types = c("integer", "numeric", "factor", "ordered"),
man = "mlr3keras::mlr_learners_regr.deep_wide",
architecture = arch
)
}
)
)
# Builds a Keras Feed Forward Neural Network with deep & wide paths
# @param task [`Task`] \cr
# A mlr3 Task.
# @param pars [`list`] \cr
# A list of parameter values from the Learner(Regr|Classif)KerasFF param_set.
# @template kerasff_description
# @return A compiled keras model
build_keras_deep_wide_model = function(task, pars) {
if ("factor" %in% task$feature_types$type && !pars$use_embedding)
stop("Factor features are only available with use_embedding = TRUE!")
# Get input and output shape for model
input_shape = list(task$ncol - 1L)
if (inherits(task, "TaskRegr")) {
output_shape = 1L
} else if (inherits(task, "TaskClassif")) {
output_shape = length(task$class_names)
if (pars$loss == "binary_crossentropy") {
if (length(output_shape) > 2L) stop("binary_crossentropy loss is only available for binary targets")
output_shape = 1L
}
}
if (pars$use_embedding) {
embd = make_embedding(task, pars$embed_size, pars$embed_dropout)
model = embd$layers
} else {
model = keras_model_sequential()
}
if (pars$use_dropout)
model = model %>% layer_dropout(pars$input_dropout, input_shape = input_shape)
wide = model %>% layer_dense(output_shape)
units = c(pars$layer_units, output_shape)
for (i in seq_len(length(units))) {
if (pars$use_batchnorm) model = model %>% layer_batch_normalization()
if (pars$use_dropout) model = model %>% layer_dropout(pars$dropout)
model = model %>%
layer_dense(
units = c(pars$layer_units, output_shape)[i],
input_shape = if (i == 1) input_shape else NULL,
kernel_regularizer = pars$regularizer,
kernel_initializer = pars$initializer,
bias_regularizer = pars$regularizer,
bias_initializer = pars$initializer
)
if (i < length(units)) { # No activation for last layer
model = model %>% layer_activation(pars$activation)
}
}
# Connect deep part and activate
model = layer_add(inputs = list(model, wide)) %>% # Connect deep and wide part
layer_activation(activation = pars$output_activation)
if (pars$use_embedding) model = keras_model(inputs = embd$inputs, outputs = model)
model %>% compile(
optimizer = pars$optimizer,
loss = pars$loss,
metrics = pars$metrics
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.