#' @title Linear Model Regression Learner
#'
#' @name mlr_learners_regr.lm
#'
#' @description
#' Ordinary linear regression.
#' Calls [stats::lm()].
#'
#' @templateVar id regr.lm
#' @template learner
#'
#' @template section_contrasts
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerRegrLM = R6Class("LearnerRegrLM",
inherit = LearnerRegr,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ps(
df = p_dbl(default = Inf, tags = "predict"),
interval = p_fct(c("none", "confidence", "prediction"), tags = "predict"),
level = p_dbl(default = 0.95, tags = "predict"),
model = p_lgl(default = TRUE, tags = "train"),
offset = p_lgl(tags = "train"),
pred.var = p_uty(tags = "predict"),
qr = p_lgl(default = TRUE, tags = "train"),
scale = p_dbl(default = NULL, special_vals = list(NULL), tags = "predict"),
singular.ok = p_lgl(default = TRUE, tags = "train"),
x = p_lgl(default = FALSE, tags = "train"),
y = p_lgl(default = FALSE, tags = "train"),
rankdeficient = p_fct(c("warnif", "simple", "non-estim", "NA", "NAwarn"), tags = "predict"),
tol = p_dbl(default = 1e-07, tags = "predict"),
verbose = p_lgl(default = FALSE, tags = "predict")
)
super$initialize(
id = "regr.lm",
param_set = ps,
predict_types = c("response", "se"),
feature_types = c("logical", "integer", "numeric", "factor", "character"),
properties = "weights",
packages = c("mlr3learners", "stats"),
label = "Linear Model",
man = "mlr3learners::mlr_learners_regr.lm"
)
}
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
if ("weights" %in% task$properties) {
pv = insert_named(pv, list(weights = task$weights$weight))
}
invoke(stats::lm,
formula = task$formula(), data = task$data(),
.args = pv, .opts = opts_default_contrasts)
},
.predict = function(task) {
pv = self$param_set$get_values(tags = "predict")
newdata = ordered_features(task, self)
se_fit = self$predict_type == "se"
prediction = invoke(predict, object = self$model, newdata = newdata, se.fit = se_fit, .args = pv)
if (se_fit) {
list(response = unname(prediction$fit), se = unname(prediction$se.fit))
} else {
list(response = unname(prediction))
}
}
)
)
#' @include aaa.R
learners[["regr.lm"]] = LearnerRegrLM
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.