skip_if_not_installed("xgboost")
skip_on_cran()
test_that("autotest", {
learner = mlr3::lrn("regr.xgboost", nrounds = 5L)
expect_learner(learner)
result = run_autotest(learner)
expect_true(result, info = result$error)
})
test_that("hotstart", {
task = tsk("mtcars")
task$select(task$feature_names[task$feature_names %nin% c("chas", "town")])
learner_1 = lrn("regr.xgboost", nrounds = 5L)
learner_1$train(task)
expect_equal(learner_1$state$param_vals$nrounds, 5L)
expect_equal(learner_1$model$niter, 5L)
hot = HotstartStack$new(learner_1)
learner_2 = lrn("regr.xgboost", nrounds = 10L)
learner_2$hotstart_stack = hot
expect_equal(hot$start_cost(learner_2, task$hash), 5L)
learner_2$train(task)
expect_equal(learner_2$model$niter, 10L)
expect_equal(learner_2$param_set$values$nrounds, 10L)
expect_equal(learner_2$state$param_vals$nrounds, 10L)
learner_3 = lrn("regr.xgboost", nrounds = 2L)
learner_3$hotstart_stack = hot
expect_equal(hot$start_cost(learner_3, task$hash), NA_real_)
learner_3$train(task)
expect_equal(learner_3$model$niter, 2L)
expect_equal(learner_3$param_set$values$nrounds, 2L)
expect_equal(learner_3$state$param_vals$nrounds, 2L)
learner_4 = lrn("regr.xgboost", nrounds = 5L)
learner_4$hotstart_stack = hot
expect_equal(hot$start_cost(learner_4, task$hash), -1L)
learner_4$train(task)
expect_equal(learner_4$model$niter, 5L)
expect_equal(learner_4$param_set$values$nrounds, 5L)
expect_equal(learner_4$state$param_vals$nrounds, 5L)
})
test_that("validation and inner tuning", {
task = tsk("mtcars")
learner = lrn("regr.xgboost",
nrounds = 10,
early_stopping_rounds = 1,
validate = 0.2
)
learner$train(task)
expect_named(learner$model$evaluation_log, c("iter", "test_rmse"))
expect_list(learner$internal_valid_scores, types = "numeric")
expect_equal(names(learner$internal_valid_scores), "rmse")
expect_list(learner$internal_tuned_values, types = "integerish")
expect_equal(names(learner$internal_tuned_values), "nrounds")
learner$validate = NULL
expect_error(learner$train(task), "field 'validate'")
learner$validate = 0.2
task$internal_valid_task = NULL
learner$param_set$set_values(
early_stopping_rounds = NULL
)
learner$train(task)
expect_equal(learner$internal_tuned_values, NULL)
expect_named(learner$model$evaluation_log, c("iter", "test_rmse"))
expect_list(learner$internal_valid_scores, types = "numeric")
expect_equal(names(learner$internal_valid_scores), "rmse")
learner = lrn("regr.xgboost",
nrounds = to_tune(upper = 1000, internal = TRUE),
validate = 0.2
)
s = learner$param_set$search_space()
expect_error(learner$param_set$convert_internal_search_space(s), "Parameter")
learner$param_set$set_values(early_stopping_rounds = 10)
learner$param_set$disable_internal_tuning("nrounds")
expect_equal(learner$param_set$values$early_stopping_rounds, NULL)
learner = lrn("regr.xgboost",
nrounds = 100L,
early_stopping_rounds = 5,
validate = 0.2
)
learner$train(task)
expect_equal(learner$internal_valid_scores$rmse,
learner$model$evaluation_log$test_rmse[learner$internal_tuned_values$nrounds])
learner = lrn("regr.xgboost")
learner$train(task)
expect_true(is.null(learner$internal_valid_scores))
expect_true(is.null(learner$internal_tuned_values))
learner = lrn("regr.xgboost", validate = 0.3, nrounds = 10)
learner$train(task)
expect_equal(learner$internal_valid_scores$rmse, learner$model$evaluation_log$test_rmse[10L])
expect_true(is.null(learner$internal_tuned_values))
learner$param_set$set_values(
nrounds = to_tune(upper = 100, internal = TRUE),
early_stopping_rounds = 10
)
expect_error(
learner$param_set$convert_internal_search_space(learner$param_set$search_space()),
"eval_metric"
)
learner$param_set$set_values(
eval_metric = "rmse"
)
expect_error(
learner$param_set$convert_internal_search_space(learner$param_set$search_space()),
regexp = NA
)
})
test_that("custom inner validation measure", {
# internal measure
task = tsk("mtcars")
learner = lrn("regr.xgboost",
nrounds = 10,
validate = 0.2,
early_stopping_rounds = 10,
eval_metric = "error"
)
learner$train(task)
expect_named(learner$model$evaluation_log, c("iter", "test_error"))
expect_list(learner$internal_valid_scores, types = "numeric")
expect_equal(names(learner$internal_valid_scores), "error")
# function
task = tsk("mtcars")
rmse = function(preds, dtrain) {
truth = xgboost::getinfo(dtrain, "label")
rmse = sqrt(mean((truth - preds)^2))
return(list(metric = "rmse", value = rmse))
}
learner = lrn("regr.xgboost",
nrounds = 10,
validate = 0.2,
early_stopping_rounds = 10,
eval_metric = rmse,
maximize = FALSE
)
learner$train(task)
expect_named(learner$model$evaluation_log, c("iter", "test_rmse"))
expect_list(learner$internal_valid_scores, types = "numeric")
expect_equal(names(learner$internal_valid_scores), "rmse")
# mlr3 measure
task = tsk("mtcars")
learner = lrn("regr.xgboost",
nrounds = 10,
validate = 0.2,
early_stopping_rounds = 10,
eval_metric = msr("regr.rmse")
)
learner$train(task)
expect_named(learner$model$evaluation_log, c("iter", "test_regr.rmse"))
expect_list(learner$internal_valid_scores, types = "numeric")
expect_equal(names(learner$internal_valid_scores), "regr.rmse")
})
test_that("mlr3measures are equal to internal measures", {
# reg:squarederror
set.seed(1)
task = tsk("mtcars")
learner = lrn("regr.xgboost",
nrounds = 10,
validate = 0.2,
early_stopping_rounds = 10,
eval_metric = msr("regr.rmse")
)
learner$train(task)
log_mlr3 = learner$model$evaluation_log$test_regr.rmse
set.seed(1)
learner$param_set$set_values(eval_metric = "rmse")
learner$train(task)
log_internal = learner$model$evaluation_log$test_rmse
expect_equal(log_mlr3, log_internal)
# reg:absoluteerror
set.seed(1)
task = tsk("mtcars")
learner = lrn("regr.xgboost",
nrounds = 10,
validate = 0.2,
objective = "reg:absoluteerror",
early_stopping_rounds = 10,
eval_metric = msr("regr.rmse")
)
learner$train(task)
log_mlr3 = learner$model$evaluation_log$test_regr.rmse
set.seed(1)
learner$param_set$set_values(eval_metric = "rmse")
learner$train(task)
log_internal = learner$model$evaluation_log$test_rmse
expect_equal(log_mlr3, log_internal)
})
test_that("base_margin (offset)", {
task = tsk("mtcars")
# same task with 0.5 offset (should not affect predictions)
data = task$data()
# see https://xgboost.readthedocs.io/en/stable/tutorials/intercept.html
set(data, j = "zeros", value = rep(0.5, nrow(data)))
task_offset = as_task_regr(data, target = "mpg")
task_offset$set_col_roles(cols = "zeros", roles = "offset")
# same task but with a numeric column acting as offset
task_offset2 = task$clone()
task_offset2$set_col_roles(cols = "qsec", roles = "offset")
# add predefined internal validation task
part = partition(task, c(0.6, 0.2)) # 60% train, 20% test, 20% validate
task$internal_valid_task = part$validation
task_offset$internal_valid_task = part$validation
task_offset2$internal_valid_task = part$validation
l = lrn("regr.xgboost", nrounds = 5)
l$validate = "predefined"
p1 = l$train(task, part$train)$predict(task, part$test) # no offset
p2 = l$train(task_offset, part$train)$predict(task_offset, part$test) # zero offset
expect_false("zeros" %in% l$model$feature_names) # offset column is not a feature
p3 = l$train(task_offset2, part$train)$predict(task_offset2, part$test) # non-zero offset
expect_false("qsec" %in% l$model$feature_names) # "qsec" column is not a feature
expect_equal(p1$response, p2$response) # zero offset => same predictions
expect_false(all(p1$response == p3$response)) # non-zero offset => different predictions
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.