#' @title Asynchronous Tuning Context
#'
#' @description
#' A [CallbackAsyncTuning] accesses and modifies data during the optimization via the `ContextAsyncTuning`.
#' See the section on active bindings for a list of modifiable objects.
#' See [callback_async_tuning()] for a list of stages that access `ContextAsyncTuning`.
#'
#' @details
#' Changes to `$instance` and `$optimizer` in the stages executed on the workers are not reflected in the main process.
#'
#' @template param_inst_async
#' @template param_tuner
#'
#' @export
ContextAsyncTuning = R6Class("ContextAsyncTuning",
inherit = ContextAsync,
active = list(
#' @field xs_learner (list())\cr
#' The hyperparameter configuration currently evaluated.
#' Contains the values on the learner scale i.e. transformations are applied.
xs_learner = function(rhs) {
if (missing(rhs)) {
return(get_private(self$instance$objective)$.xs)
} else {
self$instance$objective$.__enclos_env__$private$.xs = rhs
}
},
#' @field resample_result ([mlr3::BenchmarkResult])\cr
#' The resample result of the hyperparameter configuration currently evaluated.
resample_result = function(rhs) {
if (missing(rhs)) {
return(get_private(self$instance$objective)$.resample_result)
} else {
self$instance$objective$.__enclos_env__$private$.resample_result = rhs
}
},
#' @field aggregated_performance (`list()`)\cr
#' Aggregated performance scores and training time of the evaluated hyperparameter configuration.
#' This list is passed to the archive.
#' A callback can add additional elements which are also written to the archive.
aggregated_performance = function(rhs) {
if (missing(rhs)) {
return(get_private(self$instance$objective)$.aggregated_performance)
} else {
self$instance$objective$.__enclos_env__$private$.aggregated_performance = rhs
}
},
#' @field result_learner_param_vals (list())\cr
#' The learner parameter values passed to `instance$assign_result()`.
result_learner_param_vals = function(rhs) {
if (missing(rhs)) {
return(get_private(self$instance)$.result_learner_param_vals)
} else {
self$instance$.__enclos_env__$private$.result_learner_param_vals = rhs
}
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.