#' @title Single Criterion Tuning with Rush
#
#' @description
#' The `TuningInstanceAsyncSingleCrit` specifies a tuning problem for a [TunerAsync].
#' The function [ti_async()] creates a [TuningInstanceAsyncSingleCrit] and the function [tune()] creates an instance internally.
#'
#' @details
#' The instance contains an [ObjectiveTuningAsync] object that encodes the black box objective function a [Tuner] has to optimize.
#' The instance allows the basic operations of querying the objective at design points (`$eval_async()`).
#' This operation is usually done by the [Tuner].
#' Hyperparameter configurations are asynchronously sent to workers and evaluated by calling [mlr3::resample()].
#' The evaluated hyperparameter configurations are stored in the [ArchiveAsyncTuning] (`$archive`).
#' Before a batch is evaluated, the [bbotk::Terminator] is queried for the remaining budget.
#' If the available budget is exhausted, an exception is raised, and no further evaluations can be performed from this point on.
#' The tuner is also supposed to store its final result, consisting of a selected hyperparameter configuration and associated estimated performance values, by calling the method `instance$.assign_result`.
#'
#' @inheritSection TuningInstanceBatchSingleCrit Default Measures
#' @inheritSection ArchiveAsyncTuning Analysis
#' @inheritSection TuningInstanceBatchSingleCrit Resources
#' @inheritSection TuningInstanceBatchSingleCrit Extension Packages
#'
#' @template param_task
#' @template param_learner
#' @template param_resampling
#' @template param_measure
#' @template param_terminator
#' @template param_search_space
#' @template param_store_benchmark_result
#' @template param_store_models
#' @template param_check_values
#' @template param_callbacks
#' @template param_rush
#'
#' @template param_internal_search_space
#' @template param_xdt
#' @template param_learner_param_vals
#' @template param_internal_tuned_values
#' @template param_extra
#'
#' @template field_internal_search_space
#'
#' @export
TuningInstanceAsyncSingleCrit = R6Class("TuningInstanceAsyncSingleCrit",
inherit = OptimInstanceAsyncSingleCrit,
public = list(
internal_search_space = NULL,
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function(
task,
learner,
resampling,
measure = NULL,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,
rush = NULL
) {
require_namespaces("rush")
learner = assert_learner(as_learner(learner, clone = TRUE))
callbacks = assert_async_tuning_callbacks(as_callbacks(callbacks))
# tune token and search space
if (!is.null(search_space) && length(learner$param_set$get_values(type = "only_token", check_required = FALSE))) {
stop("If the values of the ParamSet of the Learner contain TuneTokens you cannot supply a search_space.")
}
search_space_from_tokens = is.null(search_space)
# convert tune token to search space
search_space = if (is.null(search_space)) {
learner$param_set$search_space()
} else {
as_search_space(search_space)
}
# get ids of primary and internal hyperparameters
search_spaces = split_internal_search_space(search_space)
search_space = search_spaces$search_space
self$internal_search_space = search_spaces$internal_search_space
if (!is.null(self$internal_search_space) && self$internal_search_space$has_trafo) {
stopf("Internal tuning and parameter transformations are currently not supported.
If you manually provided a search space that has a trafo and parameters tagged with 'internal_tuning',
please pass the latter separately via the argument `internal_search_space`.")
}
# set internal search space
if (!is.null(self$internal_search_space)) {
# the learner dictates how to interpret the to_tune(..., inner)
learner$param_set$set_values(.values = learner$param_set$convert_internal_search_space(self$internal_search_space))
}
# set learner parameter values
if (search_space_from_tokens) {
learner$param_set$values = learner$param_set$get_values(type = "without_token")
}
if (is.null(rush)) rush = rush::rsh()
# create codomain from measure
measures = assert_measures(as_measures(measure, task_type = task$task_type), task = task, learner = learner)
codomain = measures_to_codomain(measures)
archive = ArchiveAsyncTuning$new(
search_space = search_space,
codomain = codomain,
rush = rush,
internal_search_space = self$internal_search_space
)
objective = ObjectiveTuningAsync$new(
task = task,
learner = learner,
resampling = resampling,
measures = measures,
store_benchmark_result = store_benchmark_result,
store_models = store_models,
check_values = check_values,
callbacks = callbacks,
internal_search_space = self$internal_search_space)
super$initialize(
objective,
search_space,
terminator,
callbacks = callbacks,
rush = rush,
archive = archive)
},
#' @description
#' The [TunerAsync] object writes the best found point and estimated performance value here.
#' For internal use.
#'
#' @param y (`numeric(1)`)\cr
#' Optimal outcome.
#' @param ... (`any`)\cr
#' ignored.
assign_result = function(xdt, y, learner_param_vals = NULL, extra = NULL, ...) {
# assign for callbacks
private$.result_xdt = xdt
private$.result_y = y
private$.result_learner_param_vals = learner_param_vals
private$.result_extra = extra
call_back("on_tuning_result_begin", self$objective$callbacks, self$objective$context)
# set the column with the learner param_vals that were not optimized over but set implicitly
assert_list(private$.result_learner_param_vals, null.ok = TRUE, names = "named")
# extract internal tuned values
if ("internal_tuned_values" %in% names(private$.result_extra)) {
set(private$.result_xdt, j = "internal_tuned_values", value = list(private$.result_extra[["internal_tuned_values"]]))
}
# learner param values
if (is.null(private$.result_learner_param_vals)) {
private$.result_learner_param_vals = self$objective$learner$param_set$values
}
opt_x = unlist(transform_xdt_to_xss(private$.result_xdt, self$search_space), recursive = FALSE)
private$.result_learner_param_vals = insert_named(private$.result_learner_param_vals, opt_x)
# disable internal tuning
if (!is.null(private$.result_xdt$internal_tuned_values)) {
learner = self$objective$learner$clone(deep = TRUE)
private$.result_learner_param_vals = insert_named(private$.result_learner_param_vals, private$.result_xdt$internal_tuned_values[[1]])
learner$param_set$set_values(.values = private$.result_learner_param_vals)
learner$param_set$disable_internal_tuning(self$internal_search_space$ids())
private$.result_learner_param_vals = learner$param_set$values
}
# maintain list column
if (length(private$.result_learner_param_vals) < 2 | !nrow(private$.result_xdt)) private$.result_learner_param_vals = list(private$.result_learner_param_vals)
set(private$.result_xdt, j = "learner_param_vals", value = list(private$.result_learner_param_vals))
super$assign_result(private$.result_xdt, private$.result_y)
}
),
active = list(
#' @field result_learner_param_vals (`list()`)\cr
#' Param values for the optimal learner call.
result_learner_param_vals = function() {
private$.result$learner_param_vals[[1]]
}
),
private = list(
# intermediate objects
.result_learner_param_vals = NULL,
# initialize context for optimization
.initialize_context = function(optimizer) {
context = ContextAsyncTuning$new(self, optimizer)
self$objective$context = context
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.