#' @title Class for Multi Criteria Tuning
#'
#' @include TuningInstanceBatchSingleCrit.R ArchiveBatchTuning.R
#'
#' @description
#' The [TuningInstanceBatchMultiCrit] specifies a tuning problem for a [Tuner].
#' The function [ti()] creates a [TuningInstanceBatchMultiCrit] and the function [tune()] creates an instance internally.
#'
#' @inherit TuningInstanceBatchSingleCrit details
#' @inheritSection TuningInstanceBatchSingleCrit Resources
#'
#' @inheritSection ArchiveBatchTuning Analysis
#'
#' @template param_task
#' @template param_learner
#' @template param_resampling
#' @template param_measures
#' @template param_terminator
#' @template param_search_space
#' @template param_store_benchmark_result
#' @template param_store_models
#' @template param_check_values
#' @template param_callbacks
#'
#' @template param_internal_search_space
#' @template param_xdt
#' @template param_learner_param_vals
#' @template param_internal_tuned_values
#' @template param_extra
#'
#' @template field_internal_search_space
#'
#' @export
#' @examples
#' # Hyperparameter optimization on the Palmer Penguins data set
#' task = tsk("penguins")
#'
#' # Load learner and set search space
#' learner = lrn("classif.rpart",
#' cp = to_tune(1e-04, 1e-1, logscale = TRUE)
#' )
#'
#' # Construct tuning instance
#' instance = ti(
#' task = task,
#' learner = learner,
#' resampling = rsmp("cv", folds = 3),
#' measures = msrs(c("classif.ce", "time_train")),
#' terminator = trm("evals", n_evals = 4)
#' )
#'
#' # Choose optimization algorithm
#' tuner = tnr("random_search", batch_size = 2)
#'
#' # Run tuning
#' tuner$optimize(instance)
#'
#' # Optimal hyperparameter configurations
#' instance$result
#'
#' # Inspect all evaluated configurations
#' as.data.table(instance$archive)
TuningInstanceBatchMultiCrit = R6Class("TuningInstanceBatchMultiCrit",
inherit = OptimInstanceBatchMultiCrit,
public = list(
internal_search_space = NULL,
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function(
task,
learner,
resampling,
measures,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL
) {
learner = assert_learner(as_learner(learner, clone = TRUE))
callbacks = assert_batch_tuning_callbacks(as_callbacks(callbacks))
# tune token and search space
if (!is.null(search_space) && length(learner$param_set$get_values(type = "only_token", check_required = FALSE))) {
stop("If the values of the ParamSet of the Learner contain TuneTokens you cannot supply a search_space.")
}
search_space_from_tokens = is.null(search_space)
# convert tune token to search space
search_space = if (is.null(search_space)) {
learner$param_set$search_space()
} else {
as_search_space(search_space)
}
# get ids of primary and internal hyperparameters
search_spaces = split_internal_search_space(search_space)
search_space = search_spaces$search_space
self$internal_search_space = search_spaces$internal_search_space
# set internal search space
if (!is.null(self$internal_search_space)) {
# the learner dictates how to interpret the to_tune(..., inner)
learner$param_set$set_values(.values = learner$param_set$convert_internal_search_space(self$internal_search_space))
}
# set learner parameter values
if (search_space_from_tokens) {
learner$param_set$values = learner$param_set$get_values(type = "without_token", check_required = TRUE)
}
# create codomain from measure
measures = assert_measures(as_measures(measures, task_type = task$task_type), task = task, learner = learner)
codomain = measures_to_codomain(measures)
# initialized specialized tuning archive and objective
archive = ArchiveBatchTuning$new(
search_space = search_space,
codomain = codomain,
check_values = check_values,
internal_search_space = self$internal_search_space
)
objective = ObjectiveTuningBatch$new(
task = task,
learner = learner,
resampling = resampling,
measures = measures,
store_benchmark_result = store_benchmark_result,
store_models = store_models,
check_values = check_values,
archive = archive,
callbacks = callbacks,
internal_search_space = self$internal_search_space)
super$initialize(
objective = objective,
search_space = search_space,
terminator = terminator,
callbacks = callbacks,
archive = archive)
},
#' @description
#' The [Tuner] object writes the best found points and estimated performance values here.
#' For internal use.
#'
#' @param ydt (`data.table::data.table()`)\cr
#' Optimal outcomes, e.g. the Pareto front.
#' @param ... (`any`)\cr
#' ignored.
assign_result = function(xdt, ydt, learner_param_vals = NULL, extra = NULL, ...) {
# assign for callbacks
private$.result_xdt = xdt
private$.result_ydt = ydt
private$.result_learner_param_vals = learner_param_vals
private$.result_extra = extra
call_back("on_tuning_result_begin", self$objective$callbacks, self$objective$context)
# extract internal tuned values
if ("internal_tuned_values" %in% names(private$.result_extra)) {
set(private$.result_xdt, j = "internal_tuned_values", value = list(private$.result_extra[["internal_tuned_values"]]))
}
# set the column with the learner param_vals that were not optimized over but set implicitly
if (is.null(private$.result_learner_param_vals)) {
private$.result_learner_param_vals = self$objective$learner$param_set$values
if (length(private$.result_learner_param_vals) == 0) private$.result_learner_param_vals = list()
private$.result_learner_param_vals = replicate(nrow(private$.result_ydt), list(private$.result_learner_param_vals))
}
opt_x = transform_xdt_to_xss(private$.result_xdt, self$search_space)
if (length(opt_x) == 0) opt_x = replicate(length(private$.result_ydt), list())
private$.result_learner_param_vals = Map(insert_named, private$.result_learner_param_vals, opt_x)
# disable internal tuning
if (!is.null(private$.result_xdt$internal_tuned_values)) {
learner = self$objective$learner$clone(deep = TRUE)
private$.result_learner_param_vals = pmap(list(private$.result_learner_param_vals, private$.result_xdt$internal_tuned_values), function(lpv, itv) {
values = insert_named(lpv, itv)
learner$param_set$set_values(.values = values, .insert = FALSE)
learner$param_set$disable_internal_tuning(self$internal_search_space$ids())
learner$param_set$values
})
}
set(private$.result_xdt, j = "learner_param_vals", value = list(private$.result_learner_param_vals))
super$assign_result(private$.result_xdt, private$.result_ydt)
}
),
active = list(
#' @field result_learner_param_vals (`list()`)\cr
#' List of param values for the optimal learner call.
result_learner_param_vals = function() {
private$.result$learner_param_vals
}
),
private = list(
# intermediate objects
.result_learner_param_vals = NULL,
# initialize context for optimization
.initialize_context = function(optimizer) {
context = ContextBatchTuning$new(self, optimizer)
self$objective$context = context
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.