#' @title Class for Single Criterion Tuning
#
#' @description
#' The [TuningInstanceBatchSingleCrit] specifies a tuning problem for a [Tuner].
#' The function [ti()] creates a [TuningInstanceBatchSingleCrit] and the function [tune()] creates an instance internally.
#'
#' @details
#' The instance contains an [ObjectiveTuningBatch] object that encodes the black box objective function a [Tuner] has to optimize.
#' The instance allows the basic operations of querying the objective at design points (`$eval_batch()`).
#' This operation is usually done by the [Tuner].
#' Evaluations of hyperparameter configurations are performed in batches by calling [mlr3::benchmark()] internally.
#' The evaluated hyperparameter configurations are stored in the [ArchiveBatchTuning] (`$archive`).
#' Before a batch is evaluated, the [bbotk::Terminator] is queried for the remaining budget.
#' If the available budget is exhausted, an exception is raised, and no further evaluations can be performed from this point on.
#' The tuner is also supposed to store its final result, consisting of a selected hyperparameter configuration and associated estimated performance values, by calling the method `instance$assign_result`.
#'
#' @section Default Measures:
#' If no measure is passed, the default measure is used.
#' The default measure depends on the task type.
#'
#' | Task | Default Measure | Package |
#' |----------------|---------------------|-----------------------|
#' | `"classif"` | `"classif.ce"` | \CRANpkg{mlr3} |
#' | `"regr"` | `"regr.mse"` | \CRANpkg{mlr3} |
#' | `"surv"` | `"surv.cindex"` | \CRANpkg{mlr3proba} |
#' | `"dens"` | `"dens.logloss"` | \CRANpkg{mlr3proba} |
#' | `"classif_st"` | `"classif.ce"` | \CRANpkg{mlr3spatial} |
#' | `"regr_st"` | `"regr.mse"` | \CRANpkg{mlr3spatial} |
#' | `"clust"` | `"clust.dunn"` | \CRANpkg{mlr3cluster} |
#'
#' @inheritSection ArchiveBatchTuning Analysis
#'
#' @section Resources:
#' There are several sections about hyperparameter optimization in the [mlr3book](https://mlr3book.mlr-org.com).
#'
#' * Getting started with [hyperparameter optimization](https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html).
#' * An overview of all tuners can be found on our [website](https://mlr-org.com/tuners.html).
#' * [Tune](https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-model-tuning) a support vector machine on the Sonar data set.
#' * Learn about [tuning spaces](https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-defining-search-spaces).
#' * Estimate the model performance with [nested resampling](https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-nested-resampling).
#' * Learn about [multi-objective optimization](https://mlr3book.mlr-org.com/chapters/chapter5/advanced_tuning_methods_and_black_box_optimization.html#sec-multi-metrics-tuning).
#' * Simultaneously optimize hyperparameters and use [early stopping](https://mlr3book.mlr-org.com/chapters/chapter15/predsets_valid_inttune.html) with XGBoost.
#' * [Automate](https://mlr3book.mlr-org.com/chapters/chapter4/hyperparameter_optimization.html#sec-autotuner) the tuning.
#'
#' The [gallery](https://mlr-org.com/gallery-all-optimization.html) features a collection of case studies and demos about optimization.
#'
#' * Learn more advanced methods with the [Practical Tuning Series](https://mlr-org.com/gallery/series/2021-03-09-practical-tuning-series-tune-a-support-vector-machine/).
#' * Learn about [hotstarting](https://mlr-org.com/gallery/optimization/2023-01-16-hotstart/) models.
#' * Run the [default hyperparameter configuration](https://mlr-org.com/gallery/optimization/2023-01-31-default-configuration/) of learners as a baseline.
#' * Use the [Hyperband](https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/) optimizer with different budget parameters.
#'
#' The [cheatsheet](https://cheatsheets.mlr-org.com/mlr3tuning.pdf) summarizes the most important functions of mlr3tuning.
#'
#' @section Extension Packages:
#'
#' mlr3tuning is extended by the following packages.
#'
#' * [mlr3tuningspaces](https://github.com/mlr-org/mlr3tuningspaces) is a collection of search spaces from scientific articles for commonly used learners.
#' * [mlr3hyperband](https://github.com/mlr-org/mlr3hyperband) adds the Hyperband and Successive Halving algorithm.
#' * [mlr3mbo](https://github.com/mlr-org/mlr3mbo) adds Bayesian optimization methods.
#'
#' @template param_task
#' @template param_learner
#' @template param_resampling
#' @template param_measure
#' @template param_terminator
#' @template param_search_space
#' @template param_store_benchmark_result
#' @template param_store_models
#' @template param_check_values
#' @template param_callbacks
#'
#' @template param_xdt
#' @template param_learner_param_vals
#' @template param_internal_tuned_values
#' @template param_extra
#'
#' @template field_internal_search_space
#'
#' @export
#' @examples
#' # Hyperparameter optimization on the Palmer Penguins data set
#' task = tsk("penguins")
#'
#' # Load learner and set search space
#' learner = lrn("classif.rpart",
#' cp = to_tune(1e-04, 1e-1, logscale = TRUE)
#' )
#'
#' # Construct tuning instance
#' instance = ti(
#' task = task,
#' learner = learner,
#' resampling = rsmp("cv", folds = 3),
#' measures = msr("classif.ce"),
#' terminator = trm("evals", n_evals = 4)
#' )
#'
#' # Choose optimization algorithm
#' tuner = tnr("random_search", batch_size = 2)
#'
#' # Run tuning
#' tuner$optimize(instance)
#'
#' # Set optimal hyperparameter configuration to learner
#' learner$param_set$values = instance$result_learner_param_vals
#'
#' # Train the learner on the full data set
#' learner$train(task)
#'
#' # Inspect all evaluated configurations
#' as.data.table(instance$archive)
TuningInstanceBatchSingleCrit = R6Class("TuningInstanceBatchSingleCrit",
inherit = OptimInstanceBatchSingleCrit,
public = list(
internal_search_space = NULL,
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function(
task,
learner,
resampling,
measure = NULL,
terminator,
search_space = NULL,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL
) {
learner = assert_learner(as_learner(learner, clone = TRUE))
callbacks = assert_batch_tuning_callbacks(as_callbacks(callbacks))
# tune token and search space
if (!is.null(search_space) && length(learner$param_set$get_values(type = "only_token", check_required = FALSE))) {
stop("If the values of the ParamSet of the Learner contain TuneTokens you cannot supply a search_space.")
}
search_space_from_tokens = is.null(search_space)
# convert tune token to search space
search_space = if (is.null(search_space)) {
learner$param_set$search_space()
} else {
as_search_space(search_space)
}
search_spaces = split_internal_search_space(search_space)
search_space = search_spaces$search_space
self$internal_search_space = search_spaces$internal_search_space
if (!is.null(self$internal_search_space)) {
# the learner dictates how to interpret the to_tune(..., inner)
learner$param_set$set_values(.values = learner$param_set$convert_internal_search_space(self$internal_search_space))
}
# set learner parameter values
if (search_space_from_tokens) {
learner$param_set$values = learner$param_set$get_values(type = "without_token")
}
# create codomain from measure
measures = assert_measures(as_measures(measure, task_type = task$task_type), task = task, learner = learner)
codomain = measures_to_codomain(measures)
archive = ArchiveBatchTuning$new(
search_space = search_space,
codomain = codomain,
check_values = check_values,
internal_search_space = self$internal_search_space
)
objective = ObjectiveTuningBatch$new(
task = task,
learner = learner,
resampling = resampling,
measures = measures,
store_benchmark_result = store_benchmark_result,
store_models = store_models,
check_values = check_values,
archive = archive,
callbacks = callbacks,
internal_search_space = self$internal_search_space)
super$initialize(
objective = objective,
search_space = search_space,
terminator = terminator,
callbacks = callbacks,
archive = archive)
},
#' @description
#' The [Tuner] object writes the best found point and estimated performance value here.
#' For internal use.
#'
#' @param y (`numeric(1)`)\cr
#' Optimal outcome.
#' @param ... (`any`)\cr
#' ignored.
assign_result = function(xdt, y, learner_param_vals = NULL, extra = NULL, ...) {
# assign for callbacks
private$.result_xdt = xdt
private$.result_y = y
private$.result_learner_param_vals = learner_param_vals
private$.result_extra = extra
call_back("on_tuning_result_begin", self$objective$callbacks, self$objective$context)
# set the column with the learner param_vals that were not optimized over but set implicitly
assert_list(private$.result_learner_param_vals, null.ok = TRUE, names = "named")
# extract internal tuned values
if ("internal_tuned_values" %in% names(private$.result_extra)) {
set(private$.result_xdt, j = "internal_tuned_values", value = list(private$.result_extra[["internal_tuned_values"]]))
}
# learner param values
if (is.null(private$.result_learner_param_vals)) {
private$.result_learner_param_vals = self$objective$learner$param_set$values
}
opt_x = unlist(transform_xdt_to_xss(private$.result_xdt, self$search_space), recursive = FALSE)
private$.result_learner_param_vals = insert_named(private$.result_learner_param_vals, opt_x)
# disable internal tuning
if (!is.null(private$.result_xdt$internal_tuned_values)) {
learner = self$objective$learner$clone(deep = TRUE)
private$.result_learner_param_vals = insert_named(private$.result_learner_param_vals, private$.result_xdt$internal_tuned_values[[1]])
learner$param_set$set_values(.values = private$.result_learner_param_vals)
learner$param_set$disable_internal_tuning(self$internal_search_space$ids())
private$.result_learner_param_vals = learner$param_set$values
}
# maintain list column
if (length(private$.result_learner_param_vals) < 2 | !nrow(private$.result_xdt)) private$.result_learner_param_vals = list(private$.result_learner_param_vals)
set(private$.result_xdt, j = "learner_param_vals", value = list(private$.result_learner_param_vals))
super$assign_result(private$.result_xdt, private$.result_y)
}
),
active = list(
#' @field result_learner_param_vals (`list()`)\cr
#' Param values for the optimal learner call.
result_learner_param_vals = function() {
private$.result$learner_param_vals[[1]]
}
),
private = list(
# intermediate objects
.result_learner_param_vals = NULL,
# initialize context for optimization
.initialize_context = function(optimizer) {
context = ContextBatchTuning$new(self, optimizer)
self$objective$context = context
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.