test_that("failing learner", {
learner = lrn("classif.debug")
param_set = ps(
x = p_dbl(lower = 0, upper = 1)
)
learner$param_set$values$error_train = 0.5
tt = tnr("random_search")
instance = TuningInstanceBatchSingleCrit$new(task = tsk("iris"), learner = learner, resampling = rsmp("holdout"),
measure = msr("classif.ce"), search_space = param_set, terminator = trm("evals", n_evals = 10))
expect_error(tt$optimize(instance), "classif.debug->train")
if (packageVersion("mlr3") > "0.20.2") {
learner$encapsulate("evaluate", lrn("classif.featureless"))
} else {
learner$fallback = lrn("classif.featureless")
learner$encapsulate = c(train = "evaluate", predict = "evaluate")
}
instance = TuningInstanceBatchSingleCrit$new(task = tsk("iris"), learner = learner, resampling = rsmp("holdout"),
measure = msr("classif.ce"), search_space = param_set, terminator = trm("evals", n_evals = 10))
tt$optimize(instance)
rc = expect_list(instance$result_x_domain)
expect_list(rc, len = 1)
expect_named(rc, c("x"))
})
test_that("predictions missing", {
learner = lrn("classif.debug")
param_set = ps(
x = p_dbl(lower = 0, upper = 1)
)
learner$param_set$values$predict_missing = 0.5
tt = tnr("random_search")
instance = TuningInstanceBatchSingleCrit$new(task = tsk("iris"), learner = learner, resampling = rsmp("holdout"),
measure = msr("classif.ce"), search_space = param_set, terminator = trm("evals", n_evals = 10))
expect_error(tt$optimize(instance), "missing")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.