#' @title Boosted Generalized Linear Classification Learner
#'
#' @name mlr_learners_classif.glmboost
#'
#' @description
#' Boosted generalized linear classification learner.
#' Calls [mboost::glmboost()] from package \CRANpkg{mboost}.
#'
#' @templateVar id classif.glmboost
#' @template section_dictionary_learner
#'
#' @references
#' \cite{mlr3learners.mboost}{buhlmann_2003}
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerClassifGLMBoost = R6Class("LearnerClassifGLMBoost",
inherit = LearnerClassif,
public = list(
#' @description
#' Create a `LearnerClassifGLMBoost` object.
initialize = function() {
ps = ParamSet$new(
params = list(
ParamDbl$new(
id = "offset", default = NULL, special_vals = list(NULL),
tags = "train"),
ParamFct$new(
id = "family", default = c("Binomial"),
levels = c("Binomial", "AdaExp", "AUC"), tags = "train"),
ParamFct$new(
id = "link", default = "logit",
levels = c("logit", "probit"), tags = "train"),
ParamFct$new(
id = "type", default = "adaboost",
levels = c("glm", "adaboost"), tags = "train"),
ParamLgl$new(id = "center", default = TRUE, tags = "train"),
ParamInt$new(id = "mstop", default = 100, tags = "train"),
ParamDbl$new(id = "nu", default = 0.1, tags = "train"),
ParamFct$new(
id = "risk", default = "inbag",
levels = c("inbag", "oobag", "none"), tags = "train"),
ParamUty$new(id = "oobweights", default = NULL, tags = "train"),
ParamLgl$new(id = "trace", default = FALSE, tags = "train"),
ParamUty$new(id = "stopintern", default = FALSE, tags = "train"),
ParamUty$new(id = "na.action", default = na.omit, tags = "train"),
ParamUty$new(id = "contrasts.arg", tags = "train")
)
)
ps$add_dep("link", "family", CondEqual$new("Binomial"))
ps$add_dep("type", "family", CondEqual$new("Binomial"))
ps$add_dep("oobweights", "risk", CondEqual$new("oobag"))
super$initialize(
id = "classif.glmboost",
packages = "mboost",
feature_types = c("integer", "numeric", "factor", "ordered"),
predict_types = c("response", "prob"),
param_set = ps,
properties = c("weights", "twoclass"),
man = "mlr3learners.mboost::mlr_learners_classif.glmboost"
)
}
),
private = list(
.train = function(task) {
# Default family in mboost::glmboost is not useable for twoclass
if (is.null(self$param_set$values$family)) {
self$param_set$values = insert_named(
self$param_set$values,
list(family = "Binomial"))
}
pars = self$param_set$get_values(tags = "train")
pars_boost = pars[which(names(pars) %in%
formalArgs(mboost::boost_control))]
pars_glmboost = pars[which(names(pars) %in%
formalArgs(mboost::gamboost))]
pars_binomial = pars[which(names(pars) %in%
formalArgs(mboost::Binomial))]
f = task$formula()
data = task$data()
if ("weights" %in% task$properties) {
pars_glmboost = insert_named(
pars_glmboost,
list(weights = task$weights$weight))
}
pars_glmboost$family = switch(pars_glmboost$family,
Binomial = invoke(mboost::Binomial, .args = pars_binomial),
AdaExp = mboost::AdaExp(),
AUC = mboost::AUC())
# Predicted probabilities refer to the last factor level
if (self$predict_type == "prob") {
levs = c(task$negative, task$positive)
data[[task$target_names]] = factor(data[[task$target_names]], levs)
}
ctrl = invoke(mboost::boost_control, .args = pars_boost)
invoke(mboost::glmboost, f,
data = data, control = ctrl,
.args = pars_glmboost)
},
.predict = function(task) {
family = self$param_set$values$family
newdata = task$data(cols = task$feature_names)
if (self$predict_type == "prob" &&
(family == "AdaExp" || family == "AUC")) {
stopf("The selected family %s does not support probabilities", family)
}
if (self$predict_type == "response") {
p = invoke(predict, self$model, newdata = newdata, type = "class")
PredictionClassif$new(task = task, response = p)
} else {
p = invoke(predict, self$model, newdata = newdata, type = "response")
p = matrix(c(p, 1 - p), ncol = 2L, nrow = length(p))
colnames(p) = task$class_names
PredictionClassif$new(task = task, prob = p)
}
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.