#' @title Regression Dbarts Learner
#'
#' @aliases mlr_learners_regr.dbarts
#' @format [R6::R6Class] inheriting from [mlr3::LearnerRegr].
#'
#' @description
#' A [mlr3::LearnerRegr] for a classification dbarts implemented in
#' dbarts::dbarts()] in package \CRANpkg{dbarts}.
#'
# TODO: add references.
# @references
# Breiman, L. (2001).
# Random Forests
# Machine Learning
# \url{https://doi.org/10.1023/A:1010933404324}
#'
#' @export
LearnerRegrDbarts <- R6Class("LearnerRegrDbarts",
inherit = LearnerRegr,
public = list(
#' @description
#' Create a `LearnerRegrDbarts` object.
initialize = function() {
ps <- ParamSet$new( # parameter set using the paradox package
params = list(
# These reflect the defaults used by the dbarts package.
ParamInt$new(id = "ntree", default = 200L, lower = 1L, tags = "train"),
# Only used for continuous models. Currently untyped to support the NULL default.
# ParamDbl$new(id = "sigest", default = NULL, lower = 0, tags = "train"),
ParamUty$new(id = "sigest", default = NULL, tags = "train"),
# Only used for continuous models
ParamInt$new(id = "sigdf", default = 3L, lower = 1L, tags = "train"),
# Only used for continuous models
ParamDbl$new(id = "sigquant", default = 0.90, lower = 0, upper = 1, tags = "train"),
ParamDbl$new(id = "k", default = 2.0, lower = 0, tags = "train"),
ParamDbl$new(id = "power", default = 2.0, lower = 0, tags = "train"),
ParamDbl$new(id = "base", default = 0.95, lower = 0, tags = "train"),
# Not applicable for LearnerRegr
# ParamDbl$new(id = "binaryOffset", default = 0.0, tags = "train"),
ParamInt$new(id = "ndpost", default = 1000L, lower = 1L, tags = "train"),
ParamInt$new(id = "nskip", default = 100L, lower = 0L, tags = "train"),
ParamInt$new(id = "printevery", default = 100L, lower = 0L, tags = "train"),
ParamInt$new(id = "keepevery", default = 1L, lower = 1L, tags = "train"),
ParamLgl$new(id = "keeptrainfits", default = TRUE, tags = "train"),
ParamLgl$new(id = "usequants", default = FALSE, tags = "train"),
ParamInt$new(id = "numcut", default = 100L, lower = 1L, tags = "train"),
ParamInt$new(id = "printcutoffs", default = 0, tags = "train"),
ParamLgl$new(id = "verbose", default = TRUE, tags = "train"),
ParamLgl$new(id = "keeptrees", default = FALSE, tags = "train"),
ParamLgl$new(id = "keepcall", default = TRUE, tags = "train"),
ParamLgl$new(id = "sampleronly", default = FALSE, tags = "train"),
ParamLgl$new(id = "offset.test", default = FALSE, tags = "predict")
)
)
# Override package defaults.
# We need keeptrees to be true in order to predict().
ps$values <- list(keeptrees = TRUE)
super$initialize(
# see the mlr3book for a description: https://mlr3book.mlr-org.com/extending-mlr3.html
id = "regr.dbarts",
packages = "dbarts",
feature_types = c("integer", "numeric", "factor", "ordered"),
# TODO: add "se" to the list of predict types.
predict_types = c("response"),
param_set = ps,
# TODO: add importance.
# Parallel is giving an autotest error.
properties = c("weights"),
man = "mlr3learners.dbarts::mlr_learners_regr.bart"
)
}
),
private = list(
.train = function(task) {
pars <- self$param_set$get_values(tags = "train")
# Extact just the features from the task data.
data <- task$data(cols = task$feature_names)
# Convert from data.table to normal data.frame, just to be safe.
# Dbarts expects x.train to be a dataframe.
setDF(data)
# This will also extract a data.table
outcome <- task$data(cols = task$target_names)
setDF(outcome)
# Outcome will now be a factor vector.
outcome <- outcome[[1]]
if ("weights" %in% task$properties) {
pars$weights <- task$weights$weight
}
# Use the mlr3misc::invoke function (it's similar to do.call())
# y.train should either be a binary factor or have values {0, 1}
mlr3misc::invoke(dbarts::bart,
x.train = data, y.train = outcome,
.args = pars
)
},
.predict = function(task) {
pars <- self$param_set$get_values(tags = "predict") # get parameters with tag "predict"
newdata <- task$data(cols = task$feature_names) # get newdata
# Other possible vars: offset.test, combineChains, ...
setDF(newdata)
# This will return a matrix of predictions, where each column is an observation
# and each row is a sample from the posterior.
p <- invoke(predict, self$model, test = newdata, .args = pars)
# Transform predictions.
# TODO: confirm that this is the correct element name.
pred <- colMeans(p)
mlr3::PredictionRegr$new(task = task, response = pred)
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.