#' @title Density Smoothing Splines Learner
#'
#' @name mlr_learners_dens.spline
#'
#' @description
#' A [mlr3proba::LearnerDens] implementing smoothing splines from package
#' \CRANpkg{gss}.
#' Calls [gss::ssden()].
#'
#' @templateVar id dens.spline
#' @template section_dictionary_learner
#'
#' @references
#' Gu, C. and Wang, J. (2003),
#' Penalized likelihood density estimation: Direct cross-validation and scalable approximation.
#' Statistica Sinica, 13, 811–826.
#'
#' @template seealso_learner
#' @template example
#' @export
LearnerDensSpline = R6Class("LearnerDensSpline",
inherit = LearnerDens,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ParamSet$new(
params = list(
ParamUty$new(id = "type", tags = "train"),
ParamDbl$new(id = "alpha", default = 1.4, tags = "train"),
ParamUty$new(id = "weights", tags = "train"),
ParamUty$new(id = "na.action", default = na.omit, tags = "train"),
ParamUty$new(id = "id.basis", tags = "train"),
ParamInt$new(id = "nbasis", tags = "train"),
ParamDbl$new(id = "seed", tags = "train"),
ParamUty$new(id = "domain", tags = "train"),
ParamUty$new(id = "quad", tags = "train"),
ParamDbl$new(id = "qdsz.depth", tags = "train"),
ParamUty$new(id = "bias", tags = "train"),
ParamDbl$new(id = "prec", default = 1e-7, tags = "train"),
ParamInt$new(id = "maxiter", default = 30, lower = 1, tags = "train"),
ParamLgl$new(id = "skip.iter", tags = "train")
)
)
super$initialize(
id = "dens.spline",
packages = "gss",
feature_types = c("logical", "integer", "numeric", "character", "factor", "ordered"),
predict_types = c("pdf", "cdf"),
param_set = ps,
properties = "missings",
man = "mlr3learners.gss::mlr_learners_dens.spline"
)
}
),
private = list(
.train = function(task) {
pars = self$param_set$get_values(tags = "train")
data = task$truth()
fit = mlr3misc::invoke(gss::ssden, formula = ~ data, .args = pars)
pdf = function(x) {} # nolint
body(pdf) = substitute({
mlr3misc::invoke(gss::dssden, object = fit, x = x)
})
cdf = function(x) {} # nolint
body(cdf) = substitute({
mlr3misc::invoke(gss::pssden, object = fit, q = x)
})
quantile = function(p) {} # nolint
body(quantile) = substitute({
mlr3misc::invoke(gss::qssden, object = fit, p = p)
})
distr6::Distribution$new(
name = "Smoothing Spline Density Estimator",
short_name = "splineDens",
pdf = pdf, cdf = cdf, quantile = quantile, type = set6::Reals$new())
},
.predict = function(task) {
newdata = task$truth()
mlr3proba::PredictionDens$new(
task = task,
pdf = self$model$pdf(newdata),
cdf = self$model$cdf(newdata))
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.