#' @title Density KS Kernel Learner
#'
#' @name mlr_learners_dens.kdeKS
#'
#' @description
#' A [mlr3proba::LearnerDens] implementing kdeKS from package
#' \CRANpkg{ks}.
#' Calls [ks::kde()].
#'
#' @templateVar id dens.kdeKS
#' @template section_dictionary_learner
#'
#' @template seealso_learner
#' @template example
#' @export
LearnerDensKDEks = R6Class("LearnerDensKDEks",
inherit = LearnerDens,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ParamSet$new(
params = list(
ParamDbl$new(id = "h", lower = 0, tags = "train"),
ParamUty$new(id = "H", tags = "train"),
ParamUty$new(id = "gridsize", tags = "train"),
ParamUty$new(id = "gridtype", tags = "train"),
ParamDbl$new(id = "xmin", tags = "train"),
ParamDbl$new(id = "xmax", tags = "train"),
ParamDbl$new(id = "supp", default = 3.7, tags = "train"),
ParamDbl$new(id = "binned", tags = "train"),
ParamUty$new(id = "bgridsize", tags = "train"),
ParamLgl$new(id = "positive", default = FALSE, tags = "train"),
ParamUty$new(id = "adj.positive", tags = "train"),
ParamUty$new(id = "w", tags = "train"),
ParamLgl$new(id = "compute.cont", default = TRUE, tags = "train"),
ParamLgl$new(id = "approx.cont", default = TRUE, tags = "train"),
ParamLgl$new(id = "unit.interval", default = FALSE, tags = "train"),
ParamLgl$new(id = "verbose", default = FALSE, tags = "train"),
ParamLgl$new(id = "zero.flag", default = TRUE, tags = "train")
)
)
super$initialize(
id = "dens.kdeKS",
packages = "ks",
feature_types = c("logical", "integer", "numeric", "character", "factor", "ordered"),
predict_types = "pdf",
param_set = ps,
man = "mlr3learners.ks::mlr_learners_dens.kdeKS"
)
}
),
private = list(
.train = function(task) {
pars = self$param_set$get_values(tag = "train")
data = task$truth()
pdf <- function(x) {
}
body(pdf) <- substitute({
invoke(ks::kde, x = data, eval.points = x, .args = pars)$estimate
})
distr6::Distribution$new(
name = "ks KDE",
short_name = "ksKDE",
pdf = pdf, type = set6::Reals$new())
},
.predict = function(task) {
mlr3proba::PredictionDens$new(task = task, pdf = self$model$pdf(task$truth()))
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.