#' @title Classification Kernlab Support Vector Machine
#'
#' @name mlr_learners_classif.ksvm
#'
#' @description
#' Classification support vector machine.
#' Calls [kernlab::ksvm()] from package \CRANpkg{kernlab}.
#'
#' @templateVar id classif.ksvm
#' @template section_dictionary_learner
#'
#' @references
#' \cite{mlr3learners.kernlab}{karatzoglou_2004}
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerClassifKSVM = R6Class("LearnerClassifKSVM",
inherit = LearnerClassif,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ParamSet$new(list(
ParamLgl$new(id = "scaled", default = TRUE, tags = c("train")),
ParamFct$new(
id = "type", default = "C-svc",
levels = c("C-svc", "nu-svc", "C-bsvc", "spoc-svc", "kbb-svc"),
tags = c("train")),
ParamFct$new(
id = "kernel", default = "rbfdot",
levels = c(
"rbfdot", "polydot", "vanilladot",
"laplacedot", "besseldot", "anovadot"),
tags = c("train")),
ParamDbl$new(id = "C", default = 1, tags = c("train")),
ParamDbl$new(id = "nu", default = 0.2, lower = 0, tags = c("train")),
ParamInt$new(id = "cache", default = 40, lower = 1L, tags = c("train")),
ParamDbl$new(id = "tol", default = 0.001, lower = 0, tags = c("train")),
ParamLgl$new(id = "shrinking", default = TRUE, tags = c("train")),
ParamDbl$new(id = "sigma", default = NO_DEF, lower = 0, tags = "train"),
ParamInt$new(
id = "degree", default = NO_DEF, lower = 1L,
tags = "train"),
ParamDbl$new(id = "scale", default = NO_DEF, lower = 0, tags = "train"),
ParamInt$new(id = "order", default = NO_DEF, tags = "train"),
ParamDbl$new(id = "offset", default = NO_DEF, tags = "train")
))
ps$add_dep(
"C", "type",
CondAnyOf$new(c("C-svc", "C-bsvc", "spoc-svc", "kbb-svc")))
ps$add_dep("nu", "type", CondAnyOf$new(c("nu-svc")))
ps$add_dep(
"sigma", "kernel",
CondAnyOf$new(c("rbfdot", "laplacedot", "besseldot", "anovadot")))
ps$add_dep(
"degree", "kernel",
CondAnyOf$new(c("polydot", "besseldot", "anovadot")))
ps$add_dep("scale", "kernel", CondAnyOf$new(c("polydot")))
ps$add_dep("order", "kernel", CondAnyOf$new(c("besseldot")))
ps$add_dep("offset", "kernel", CondAnyOf$new(c("polydot")))
super$initialize(
id = "classif.ksvm",
packages = "kernlab",
feature_types = c(
"logical", "integer", "numeric",
"character", "factor", "ordered"),
predict_types = c("response", "prob"),
param_set = ps,
properties = c("weights", "twoclass", "multiclass"),
man = "mlr3learners.kernlab::mlr_learners_classif.ksvm"
)
}),
private = list(
.train = function(task) {
pars = self$param_set$get_values(tags = "train")
kpar = intersect(
c("sigma", "degree", "scale", "order", "offset"),
names(pars))
if ("weights" %in% task$properties) {
pars$class.weights = task$weights$weight
}
if (length(kpar) > 0) {
pars$kpar = pars[kpar]
pars[kpar] = NULL
}
f = task$formula()
data = task$data()
invoke(kernlab::ksvm,
x = f, data = data,
prob.model = self$predict_type == "prob", .args = pars)
},
.predict = function(task) {
newdata = task$data(cols = task$feature_names)
predict_type = ifelse(self$predict_type == "prob",
"probabilities", "response")
p = invoke(kernlab::predict, self$model,
newdata = newdata,
type = predict_type)
if (self$predict_type == "response") {
PredictionClassif$new(task = task, response = p)
} else {
PredictionClassif$new(task = task, prob = p)
}
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.