#' @title Density Plug-In Kernel Learner
#'
#' @name mlr_learners_dens.plug
#'
#' @description
#' A [mlr3proba::LearnerDens] implementing plug-in KDE from package
#' \CRANpkg{plugdensity}.
#' Calls [plugdensity::plugin.density()].
#'
#' @templateVar id dens.plug
#' @template section_dictionary_learner
#'
#' @references
#' J. Engel, Eva Herrmann and Theo Gasser (1994).
#' An iterative bandwidth selector for kernel estimation of densities and their derivatives.
#' Journal of Nonparametric Statistics 4, 21–34.
#'
#' @template seealso_learner
#' @template example
#' @export
LearnerDensPlugin = R6Class("LearnerDensPlugin",
inherit = LearnerDens,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ParamSet$new(
params = list(
ParamLgl$new(id = "na.rm", default = FALSE, tags = "train")
)
)
super$initialize(
id = "dens.plug",
packages = "plugdensity",
feature_types = c("logical", "integer", "numeric", "character", "factor", "ordered"),
predict_types = "pdf",
param_set = ps,
properties = "missings",
man = "mlr3learners.plugdensity::mlr_learners_dens.plug"
)
}
),
private = list(
.train = function(task) {
pdf <- function(x) {} # nolint
body(pdf) <- substitute({
mlr3misc::invoke(plugdensity::plugin.density, x = data, xout = x, na.rm = TRUE)$y
}, list(data = task$truth()))
distr6::Distribution$new(
name = "Plugin KDE",
short_name = "PluginKDE",
pdf = pdf,
type = set6::Reals$new())
},
.predict = function(task) {
mlr3proba::PredictionDens$new(task = task, pdf = self$model$pdf(task$truth()))
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.