#' @title Density Nonparametric Learner
#'
#' @name mlr_learners_dens.nonpar
#'
#' @description
#' A [mlr3proba::LearnerDens] implementing nonparametric density estimation from package
#' \CRANpkg{sm}.
#' Calls [sm::sm.density()].
#'
#' @templateVar id dens.nonpar
#' @template section_dictionary_learner
#'
#' @references
#' Bowman, A.W. and Azzalini, A. (1997).
#' Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-Plus Illustrations.
#' Oxford University Press, Oxford.
#'
#' @template seealso_learner
#' @template example
#' @export
LearnerDensNonparametric = R6Class("LearnerDensNonparametric",
inherit = LearnerDens,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ParamSet$new(
params = list(
ParamDbl$new(id = "h", tags = "train"),
ParamUty$new(id = "group", tags = "train"),
ParamDbl$new(id = "delta", tags = "train"),
ParamDbl$new(id = "h.weights", default = 1, tags = "train"),
ParamUty$new(id = "hmult", default = 1, tags = "train"),
ParamFct$new(
id = "method", default = "normal",
levels = c("normal", "cv", "sj", "df", "aicc"), tags = "train"),
ParamLgl$new(id = "positive", default = FALSE, tags = "train"),
ParamUty$new(id = "verbose", default = 1, tags = "train")
)
)
super$initialize(
id = "dens.nonpar",
packages = "sm",
feature_types = c("logical", "integer", "numeric", "character", "factor", "ordered"),
predict_types = "pdf",
param_set = ps,
properties = "weights",
man = "mlr3learners.sm::mlr_learners_dens.nonpar"
)
}
),
private = list(
.train = function(task) {
pars = self$param_set$get_values(tag = "train")
if ("weights" %in% task$properties) {
pars$weights = task$weights$weight
}
pdf = function(x) {} # nolint
body(pdf) = substitute({
mlr3misc::invoke(sm::sm.density,
x = data, eval.points = x, display = "none", show.script = FALSE,
.args = pars)$estimate
}, list(data = task$truth()))
distr6::Distribution$new(
name = "Nonparametric Density",
short_name = "NonparDens",
type = set6::Reals$new(),
pdf = pdf)
},
.predict = function(task) {
mlr3proba::PredictionDens$new(task = task, pdf = self$model$pdf(task$truth()))
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.