# Packages ----------------------------------------------------------------
library(torch)
library(torchvision)
# Datasets ----------------------------------------------------------------
dir <- "~/Downloads/tiny-imagenet"
device <- if(cuda_is_available()) "cuda" else "cpu"
to_device <- function(x, device) {
x$to(device = device)
}
train_ds <- tiny_imagenet_dataset(
dir,
download = TRUE,
transform = function(x) {
x %>%
transform_to_tensor() %>%
to_device(device) %>%
transform_resize(c(64, 64))
}
)
valid_ds <- tiny_imagenet_dataset(
dir,
download = TRUE,
split = "val",
transform = function(x) {
x %>%
transform_to_tensor() %>%
to_device(device) %>%
transform_resize(c(64,64))
}
)
train_dl <- dataloader(train_ds, batch_size = 32, shuffle = TRUE, drop_last = TRUE)
valid_dl <- dataloader(valid_ds, batch_size = 32, shuffle = FALSE, drop_last = TRUE)
# Model -------------------------------------------------------------------
model <- model_alexnet(pretrained = FALSE, num_classes = length(train_ds$classes))
model$to(device = device)
optimizer <- optim_adagrad(model$parameters, lr = 0.005)
scheduler <- lr_step(optimizer, step_size = 1, 0.95)
loss_fn <- nn_cross_entropy_loss()
# Training loop -----------------------------------------------------------
train_step <- function(batch) {
optimizer$zero_grad()
output <- model(batch[[1]]$to(device = device))
loss <- loss_fn(output, batch[[2]]$to(device = device))
loss$backward()
optimizer$step()
loss
}
valid_step <- function(batch) {
model$eval()
pred <- model(batch[[1]]$to(device = device))
pred <- torch_topk(pred, k = 5, dim = 2, TRUE, TRUE)[[2]]
pred <- pred$to(device = torch_device("cpu"))
correct <- batch[[2]]$view(c(-1, 1))$eq(pred)$any(dim = 2)
model$train()
correct$to(dtype = torch_float32())$mean()$item()
}
for (epoch in 1:50) {
pb <- progress::progress_bar$new(
total = length(train_dl),
format = "[:bar] :eta Loss: :loss"
)
l <- c()
coro::loop(for (b in train_dl) {
loss <- train_step(b)
l <- c(l, loss$item())
pb$tick(tokens = list(loss = mean(l)))
})
acc <- c()
with_no_grad({
coro::loop(for (b in valid_dl) {
accuracy <- valid_step(b)
acc <- c(acc, accuracy)
})
})
scheduler$step()
cat(sprintf("[epoch %d]: Loss = %3f, Acc= %3f \n", epoch, mean(l), mean(acc)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.