#' @title Finding constant in modified option.
#'
#' @description
#' The call_Newton_concave function is used to find second constant L in modified call option.
#'
#' @usage call_Newton_concave(L1, strike, drift, rate, vol, p, epsilon = 1e-10)
#'
#' @param L1 numeric value, first constant L1 > K.
#' @param strike numeric value, strike price for call option.
#' @param drift numeric value, drift of the model.
#' @param rate numeric value, risk free rate in the model, r >= 0.
#' @param vol numeric value, volatility of the model, vol > 0.
#' @param p numeric value, power of the loss function, p > 1.
#' @param epsilon numeric value, acceptable calculation error
#' @return A numeric value, a second constant for modified call option by concave function.
#'
#' @details There is a need to be careful when there is a warning message.
#' It means that a numerical error occurred during the algorithm and the algorithm was terminated without a while loop
#'
#' @examples
#' call_Newton_concave(140, 100, 0.1, 0, 0.2, 0.5)
#'
#' @export
call_Newton_concave <- function(L1, strike, drift, rate, vol, p, epsilon = 1e-10){
if ( p <= 0 | p >= 1 ){
stop("Wrong p argument. p is in the range (0, 1)")
}
m = drift - rate
k = m / ( vol^2*(1 - p) )
if(m / vol^2 <= 1 - p){
stop(paste("There is no need for a constant other than", L1))
}
c <- ( L1 - strike )^(1 - p) * L1^(-m / vol^2)
c1 <- c^( 1 / (1 - p) )
x_pocz = ( 1 / (k*c1) )^( 1 / (k-1) )
if(L1 <= x_pocz){
x = x_pocz + (x_pocz - L1)/2
}
else{
x = strike
}
n <- 0
if( is.nan(c1*x^(k) - x + strike) ){
warning(paste("NaNs produced. Newton's algorithm was not fully working. Check if const are the same.", "For L1:",
call_const(L1, strike, drift, rate, vol, p), "For L2:", call_const(x, strike, drift, rate, vol, p) ))
return(x)
}
while ( abs(c1*x^(k) - x + strike) > epsilon ) {
x <- x - (c1 * x^(k) - x + strike) / (k * c1 * x^(k-1) - 1)
n <- n + 1
}
return(x)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.