Description Usage Arguments Value Author(s) Examples
Recursive forecasting of an acp model.
| 1 | 
| object |  an object of class  | 
| sample | the point of sample from which the recursive forecast process will begin. | 
| ydata | a data frame containing the real values of the dependent varible. | 
| ... | not used. | 
a series of forecasted values
Siakoulis Vasileios
| 1 2 3 4 5 6 7 8 9 10 11 12 | data(polio)
#Create time trend and seasonality variables
trend=(1:168/168)
cos12=cos((2*pi*(1:168))/12)
sin12=sin((2*pi*(1:168))/12)
cos6=cos((2*pi*(1:168))/6)
sin6=sin((2*pi*(1:168))/6)
polio_data<-data.frame(polio, trend , cos12, sin12, cos6, sin6)
mod1 <- acp(polio~-1+trend+cos12+sin12+cos6+sin6,data=polio_data)
fitfor<-forecast(mod1,158,polio_data[[1]])
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.