mbgcnbd.EstimateParameters | R Documentation |
Estimates parameters for the (M)BG/CNBD-k model via Maximum Likelihood Estimation.
mbgcnbd.EstimateParameters(
cal.cbs,
k = NULL,
par.start = c(1, 3, 1, 3),
max.param.value = 10000,
trace = 0
)
bgcnbd.EstimateParameters(
cal.cbs,
k = NULL,
par.start = c(1, 3, 1, 3),
max.param.value = 10000,
trace = 0
)
mbgnbd.EstimateParameters(
cal.cbs,
par.start = c(1, 3, 1, 3),
max.param.value = 10000,
trace = 0
)
cal.cbs |
Calibration period customer-by-sufficient-statistic (CBS)
data.frame. It must contain a row for each customer, and columns |
k |
Integer-valued degree of regularity for Erlang-k distributed
interpurchase times. By default this |
par.start |
Initial (M)BG/CNBD-k parameters. A vector with |
max.param.value |
Upper bound on parameters. |
trace |
If larger than 0, then the parameter values are is printed every
|
A vector of estimated parameters.
(M)BG/CNBD-k: Reutterer, T., Platzer, M., & Schroeder, N. (2020). Leveraging purchase regularity for predicting customer behavior the easy way. International Journal of Research in Marketing. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.ijresmar.2020.09.002")}
Batislam, E. P., Denizel, M., & Filiztekin, A. (2007). Empirical validation and comparison of models for customer base analysis. International Journal of Research in Marketing, 24(3), 201-209. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.ijresmar.2006.12.005")}
bgnbd.EstimateParameters
## Not run:
data("groceryElog")
cbs <- elog2cbs(groceryElog)
(params <- mbgcnbd.EstimateParameters(cbs))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.