View source: R/simu_functions.R
simu_base_param | R Documentation |
The basic parameters of ZINB(μ, θ, z) from the reference dataset can be estimated with DCA (Deep Count Autoencoder).
simu_base_param( t_mean, t_disp, t_drop, t_meta, nTotal = 30, nall = 40, RIN_adj = FALSE )
t_mean |
mean parameter matrix μ of the reference dataset (gene x cell). |
t_disp |
dispersion parameter matrix θ of the reference dataset (gene x cell). |
t_drop |
dropout parameter matrix z of the reference dataset (gene x cell). |
t_meta |
Data frame (nrow = cell) of meta information.
It must contain a column |
nTotal |
numbers of genes to simulate |
nall |
numbers of individuals to simulate |
RIN_adj |
If |
a list containing:
sample_ctrl
: gene x individual x param array,
which gives the parameter μ, θ and z of ZINB for simulation.
RNA.simu
: residual standard deviations of means.
Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S., & Theis, F. J. (2019). Single-cell RNA-seq denoising using a deep count Autoencoder. Nature Communications, 10(1), 1-14.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.