library(naomi) library(tidyverse) library(sf)
The MVP version of Naomi web tool allows upload of a single GeoJSON file for specifying the area hierarchy. This preprocessing step joins the area tables into a single long format dataset and saves as a GeoJSON for upload to the web tool.
Area hierarchy and boundaries
area_merged <- read_sf(system.file("extdata/demo_areas.geojson", package = "naomi"))
Population data
pop_agesex <- read_csv(system.file("extdata/demo_population_agesex.csv", package = "naomi"))
Survey data
survey_hiv_indicators <- read_csv(system.file("extdata/demo_survey_hiv_indicators.csv", package = "naomi"))
Programme data
art_number <- read_csv(system.file("extdata/demo_art_number.csv", package = "naomi")) anc_testing <- read_csv(system.file("extdata/demo_anc_testing.csv", package = "naomi"))
Programme data
Spectrum PJNZ
pjnz <- system.file("extdata/demo_mwi2024_v6.36.pjnz", package = "naomi") spec <- extract_pjnz_naomi(pjnz) #> Warning in normalizePath(zipfile): path[1]="": No such file or directory #> Warning in normalizePath(zipfile): path[1]="": No such file or directory #> Error in zip::unzip(path, exdir = unzip_dir): zip error: Cannot open zip file `` for reading in file zip.c:137
The following are required to be provided to define the model state space:
scope
: A collection of area_id
s defining the set of areas to be modelled.
Usually this is simply national level, so the level 0 area_id
.level
: Area level at which to fit model.quarter_id_t1
: The first time point for the model--approximately the midpoint
of the household survey data used.quarter_id_t2
: The second time point for the model--the current time for which
estimates are needed.quarter_id_t3
: The third time point for the model--the future projection for HIV
estimates.scope <- "MWI" level <- 4 calendar_quarter_t1 <- "CY2020Q3" calendar_quarter_t2 <- "CY2023Q4" calendar_quarter_t3 <- "CY2024Q3" calendar_quarter_t4 <- "CY2025Q3" calendar_quarter_t5 <- "CY2026Q3"
The following select data inputs to model fitting from the uploaded datasets.
Providing NULL
for any will exclude that data source from model fitting.
quarter_id_t1
.artnum_quarter_id_t1
and artnum_quarter_id_t1
are the time point at
which current on ART programme data will be used to estimte ART coverage.
They are typically the same quarter_id_t1
and quarter_id_t2
if ART
programme data are used.anc_quarter_id_t1
and anc_quarter_id_t2
are typically a range of 3-4 quarters. Data will be aggregated over these quarters for a larger sample size. They
will typically be consecutive quarters, though a quarter could be dropped for
example if there were reporting problems known to affect a given quarter.
Survey IDs to include in fittingprev_survey_ids <- "DEMO2020PHIA" artcov_survey_ids <- "DEMO2020PHIA" vls_survey_ids <- NULL recent_survey_ids <- "DEMO2020PHIA" artnum_calendar_quarter_t1 <- "CY2020Q3" artnum_calendar_quarter_t2 <- "CY2023Q4" anc_clients_year2 <- 2023 anc_clients_year2_num_months <- 12 anc_prevalence_year1 <- 2020 anc_prevalence_year2 <- 2023 anc_art_coverage_year1 <- 2020 anc_art_coverage_year2 <- 2023
Setup the model
naomi_mf <- naomi_model_frame(area_merged, pop_agesex, spec, scope = scope, level = level, calendar_quarter1 = calendar_quarter_t1, calendar_quarter2 = calendar_quarter_t2, calendar_quarter3 = calendar_quarter_t3, calendar_quarter4 = calendar_quarter_t4, calendar_quarter5 = calendar_quarter_t5, spectrum_population_calibration = "national", output_aware_plhiv = TRUE, artattend = TRUE, artattend_t2 = FALSE, anchor_home_district = TRUE, artattend_log_gamma_offset = -4L, adjust_area_growth = TRUE) #> Error in UseMethod("filter"): no applicable method for 'filter' applied to an object of class "function"
Prepare data inputs
naomi_data <- select_naomi_data( naomi_mf = naomi_mf, survey_hiv_indicators = survey_hiv_indicators, anc_testing = anc_testing, art_number = art_number, prev_survey_ids = prev_survey_ids, artcov_survey_ids = artcov_survey_ids, recent_survey_ids = recent_survey_ids, vls_survey_ids = vls_survey_ids, artnum_calendar_quarter_t1 = artnum_calendar_quarter_t1, artnum_calendar_quarter_t2 = artnum_calendar_quarter_t2, anc_clients_year_t2 = anc_clients_year2, anc_clients_year_t2_num_months = anc_clients_year2_num_months, anc_prev_year_t1 = anc_prevalence_year1, anc_prev_year_t2 = anc_prevalence_year2, anc_artcov_year_t1 = anc_art_coverage_year1, anc_artcov_year_t2 = anc_art_coverage_year2 ) #> Error in eval(expr, envir, enclos): object 'naomi_mf' not found
tmb_inputs <- prepare_tmb_inputs(naomi_data) #> Error in eval(expr, envir, enclos): object 'naomi_data' not found
Fit the TMB model
fit <- fit_tmb(tmb_inputs) #> Error in eval(expr, envir, enclos): object 'tmb_inputs' not found
Calculate model outputs. We can calculate outputs based on posterior mode
estimates before running report_tmb()
to calculate posterior intervals.
outputs <- output_package(fit, naomi_data) #> Error in eval(expr, envir, enclos): object 'fit' not found
The output package consists of a data frame of indicators and metadata defining the labels for each indicator.
names(outputs) #> Error in eval(expr, envir, enclos): object 'outputs' not found
If uncertainty has not been calcualted yet, the output object retures values
for mode
, but not mean
or lower
and upper
95% uncertainty ranges.
outputs$indicators %>% dplyr::filter( indicator == "prevalence", # HIV prevalence age_group == "Y015_049" # Age group 15-49 ) %>% head() #> Error in eval(expr, envir, enclos): object 'outputs' not found
The function add_output_labels()
returns the indicators table
with labels added as additional columns.
add_output_labels(outputs) %>% dplyr::filter( indicator == "prevalence", # HIV prevalence age_group == "Y015_049" # Age group 15-49 ) %>% head() #> Error in eval(expr, envir, enclos): object 'outputs' not found
Calculate uncertainty ranges and add to the output object (This is time consuming and memory intensive.
system.time(fit <- sample_tmb(fit)) #> Error in eval(expr, envir, enclos): object 'fit' not found #> Timing stopped at: 0 0 0
Regenerate outputs with uncertainty ranges.
system.time(outputs <- output_package(fit, naomi_data)) #> Error in eval(expr, envir, enclos): object 'fit' not found #> Timing stopped at: 0.001 0 0 outputs_calib <- calibrate_outputs(outputs, naomi_mf, spectrum_plhiv_calibration_level = "national", spectrum_plhiv_calibration_strat = "sex_age_group", spectrum_artnum_calibration_level = "national", spectrum_artnum_calibration_strat = "sex_age_group", spectrum_aware_calibration_level = "national", spectrum_aware_calibration_strat = "sex_age_group", spectrum_infections_calibration_level = "national", spectrum_infections_calibration_strat = "sex_age_group") #> Error in eval(expr, envir, enclos): object 'outputs' not found outputs$indicators %>% dplyr::filter( indicator == "prevalence", # HIV prevalence age_group == "Y015_049" # Age group 15-49 ) %>% head() #> Error in eval(expr, envir, enclos): object 'outputs' not found
Save model outputs to ZIP
dir.create("outputs", showWarnings = FALSE) save_output_package(outputs, "demo_outputs", "outputs", with_labels = FALSE) #> Error in eval(expr, envir, enclos): object 'outputs' not found save_output_package(outputs, "demo_outputs_with_labels", "outputs", with_labels = TRUE) #> Error in eval(expr, envir, enclos): object 'outputs' not found save_output_package(outputs, "demo_outputs_single_csv", "outputs", with_labels = TRUE, single_csv = TRUE) #> Error in eval(expr, envir, enclos): object 'outputs' not found save_output_package(outputs, "demo_outputs_single_csv_unlabelled", "outputs", with_labels = FALSE, single_csv = TRUE) #> Error in eval(expr, envir, enclos): object 'outputs' not found ## #' 6. Plot some model outputs indicators <- add_output_labels(outputs) %>% left_join(outputs$meta_area %>% select(area_level, area_id, center_x, center_y)) %>% sf::st_as_sf() #> Error in eval(expr, envir, enclos): object 'outputs' not found
15-49 prevalence by district
indicators %>% filter(age_group == "Y015_049", indicator == "prevalence", area_level == 4) %>% ggplot(aes(fill = mode)) + geom_sf() + viridis::scale_fill_viridis(labels = scales::percent_format()) + th_map() + facet_wrap(~sex) #> Error in eval(expr, envir, enclos): object 'indicators' not found
15-49 prevalence by Zone
indicators %>% filter(age_group == "Y015_049", ## sex == "both", indicator == "prevalence", area_level == 2) %>% ggplot(aes(fill = mean)) + geom_sf() + viridis::scale_fill_viridis(labels = scales::percent_format()) + th_map() + facet_wrap(~sex) #> Error in eval(expr, envir, enclos): object 'indicators' not found
Age-specific prevalence, national
indicators %>% dplyr::filter(area_level == 0, sex != "both", age_group %in% get_five_year_age_groups(), calendar_quarter == "CY2023Q4", indicator == "prevalence") %>% left_join(get_age_groups()) %>% mutate(age_group = fct_reorder(age_group_label, age_group_sort_order)) %>% ggplot(aes(age_group, mean, ymin = lower, ymax = upper, fill = sex)) + geom_col(position = "dodge") + geom_linerange(position = position_dodge(0.8)) + scale_fill_brewer(palette = "Set1") + scale_y_continuous(labels = scales::percent_format(1)) + facet_wrap(~area_name) + theme(axis.text.x = element_text(angle = 90, hjust = 1.0, vjust = 0.5)) #> Error in eval(expr, envir, enclos): object 'indicators' not found
15-64 ART coverage by district
indicators %>% filter(age_group == "Y015_064", area_level == 4, indicator == "art_coverage") %>% ggplot(aes(fill = mean)) + geom_sf() + viridis::scale_fill_viridis(labels = scales::percent_format()) + th_map() + facet_wrap(~sex) #> Error in eval(expr, envir, enclos): object 'indicators' not found
Age-specific ART coverage, national
indicators %>% dplyr::filter(area_level == 0, sex != "both", age_group %in% get_five_year_age_groups(), indicator == "art_coverage", calendar_quarter == "CY2023Q4") %>% left_join(get_age_groups()) %>% mutate(age_group = fct_reorder(age_group_label, age_group_sort_order)) %>% ggplot(aes(age_group, mean, ymin = lower, ymax = upper, fill = sex)) + geom_col(position = "dodge") + geom_linerange(position = position_dodge(0.8)) + scale_fill_brewer(palette = "Set1") + scale_y_continuous(labels = scales::percent_format(1)) + facet_wrap(~calendar_quarter) + theme(axis.text.x = element_text(angle = 90, hjust = 1.0, vjust = 0.5)) #> Error in eval(expr, envir, enclos): object 'indicators' not found
ART coverage by age/sex and region
indicators %>% filter(area_level == 1, sex != "both", age_group %in% get_five_year_age_groups(), indicator == "art_coverage", calendar_quarter == "CY2023Q4") %>% left_join(get_age_groups()) %>% mutate(age_group = fct_reorder(age_group_label, age_group_sort_order)) %>% ggplot(aes(age_group, mean, ymin = lower, ymax = upper, fill = sex)) + geom_col(position = "dodge") + geom_linerange(position = position_dodge(0.8)) + scale_fill_brewer(palette = "Set1") + scale_y_continuous(labels = scales::percent_format(1)) + facet_wrap(~area_name) + theme(axis.text.x = element_text(angle = 90, hjust = 1.0, vjust = 0.5)) #> Error in eval(expr, envir, enclos): object 'indicators' not found
Bubble plot prevalence and PLHIV
indicators %>% filter(age_group == "Y015_064", area_level == 2, indicator %in% c("prevalence", "plhiv"), calendar_quarter == "CY2023Q4") %>% select(sex, center_x, center_y, indicator_label, mean) %>% spread(indicator_label, mean) %>% ggplot() + geom_sf() + geom_point(aes(center_x, center_y, colour = `HIV prevalence`, size = PLHIV)) + viridis::scale_color_viridis(labels = scales::percent_format()) + th_map() + facet_wrap(~sex) #> Error in eval(expr, envir, enclos): object 'indicators' not found
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.