#' @title Probability of rank of test given effect size by normal approximation
#'
#' @description A normal approximation to comnpute the probability of rank of a
#' test being higher than any other test given the effect size from external
#' information.
#' @param k Integer, rank of a test
#' @param et Numeric, effect of the targeted test for importance sampling
#' @param ey Numeric, mean/median covariate efffect from external information
#' @param nrep Integer, number of replications for importance sampling
#' @param m0 Integer, number of true null hypothesis
#' @param m1 Integer, number of true alternative hypothesis
#' @param effectType Character ("continuous" or "binary"), type of effect sizes
#'
#' @details If one wants to test \deqn{H_0: epsilon_i=0 vs. H_a: epsilon_i > 0,}
#' then \code{ey} should be mean of the covariate effect sizes,
#' This is called hypothesis testing for the continuous effect sizes.\cr
#'
#' If one wants to test \deqn{H_0: epsilon_i=0 vs. H_a: epsilon_i = epsilon,}
#' then \code{ey} should be median or any discrete value of the
#' covariate effect sizes. This is called hypothesis testing for the Binary
#' effect sizes.\cr
#'
#' \code{m1} and \code{m0} can be estimated using \code{qvalue} from
#' a bioconductor package \code{qvalue}.
#'
#' @author Mohamad S. Hasan, shakilmohamad7@gmail.com
#'
#' @export
#'
#' @import stats
#'
#' @seealso \code{\link{dnorm}} \code{\link{pnorm}} \code{\link{rnorm}}
#' \code{\link{qvalue}}
#'
#' @return \code{prob} Numeric, probability of the rank of a test
#'
#' @examples
#' # compute the probability of the rank of a test being third if all tests are
#' # from the true null
#' prob <- prob_rank_givenEffect(k = 3, et = 0, ey = 0, nrep = 10000,
#' m0 = 50, m1 = 50)
#'
#' # compute the probabilities of the ranks of a test being rank 1 to 100 if the
#' # targeted test effect is 2 and the overall mean covariate effect is 1.
#' ranks <- 1:100
#' prob <- sapply(ranks, prob_rank_givenEffect, et = 2, ey = 1, nrep = 10000,
#' m0 = 50, m1 = 50)
#'
#' # plot
#' plot(ranks,prob)
#===============================================================================
# function to compute p(rank=k|covariateEffect=ey) by normal approximation
#------------------------------------------------------------------------
# we used only uniform effects for continuous case.
# internal parameters:-----
# t = generate test statistics for target test with effect size et
# p0 = prob of null test having higher test stat value than t
# m = total number of tests
# a = lower limit of the uniform distribution
# b = upper limit of the uniform distribution
# el = vector of uniform effect sizes
# p1 = prob of alt test having higher test stat value than t
#===============================================================================
prob_rank_givenEffect_approx <- function(k, et, ey, nrep = 10000, m0, m1,
effectType = c("binary", "continuous"))
{
t <- rnorm(nrep, et, 1)
p0 <- pnorm(-t, mean = 0, sd = 1, lower.tail = TRUE)
if(effectType == "binary"){
p1 <- pnorm(ey - t, mean = 0, sd = 1, lower.tail = TRUE)
} else { if(ey == 0){
p1 <- pnorm(ey - t, mean = 0, sd = 1, lower.tail = TRUE)
} else {
m = m0 + m1
a = ey - 1
b = ey
xb = b - t
xa = a - t
p1 = (xb*pnorm(xb) - xa*pnorm(xa) + dnorm(xb) - dnorm(xa))/(b-a)
}
}
mean0 <- (m0 - 1)*p0 + m1*p1 + 1
mean1 <- m0*p0 + (m1 - 1)*p1 + 1
var0 <- (m0 - 1)*p0*(1 - p0) + m1*p1*(1 - p1)
var1 <- m0*p0*(1 - p0) + (m1 - 1)*p1*(1 - p1)
prob <- ifelse(et == 0, mean(dnorm(k, mean0, sqrt(var0))),
mean(dnorm(k, mean1, sqrt(var1))))
return(prob)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.