Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/fwerPowerFdrPower.R
This function simulate the Family Wise Error Rate (FWER) and the corresponding Power, and the False Discovery Rate (FDR) and the corresponding Power for the different effect sizes
| 1 2 3 | fwerPowerFdrPower(i, simu, null, corr = 0, cv = 0, alpha = 0.05,
  groupSize = 100, effectType = c("continuous", "binary"),
  covariateEffectVec, datWeightByNull)
 | 
| i | Integer, i-th effect size of a vector of effects | 
| simu | Integer, number of replications | 
| null | Numeric, proportion of the true null hypothesis | 
| corr | Numeric, correlation between the test statistics | 
| cv | Numeric, coefficient of variation of the test statistics | 
| alpha | Numeric value of the significance threshold | 
| groupSize | Integer, number of test statistics per group | 
| effectType | Character ("continuous" or "binary"), type of effect sizes | 
| covariateEffectVec | A numeric vector of different covariate-effect size | 
| datWeightByNull | A numeric matrix of weights, each column corresponds to an covariate-effect size | 
This function simulate Family Wise Error Rate (FWER) and corresponding Power, and False Discovery Rate (FDR) and the corresponding Power for the different effect sizes
A matrix of 16 rows containing information about FWER, POWER, FDR, and POWER (4 rows for each item)
Mohamad S. Hasan, shakilmohamad7@gmail.com
Hasan and Schliekelman (2017)
weight_byEffect_cont
ranksProb_byEffect
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # vector of covariate-effect sizes
covariateEffectVec <- c(1, 1.5, 2)
# compute probability matrix
ranksProb_byEffect <- sapply(1:length(covariateEffectVec), ranksProb_byEffect,
             null = .9, m = 100, covariateEffectVec = covariateEffectVec)
# compute weights
weightByEffect <- sapply(1:length(covariateEffectVec), weight_byEffect_cont,
                   alpha = .05, null = .9, m = 100, delInterval = .01,
                   covariateEffectVec = covariateEffectVec,
                   datByNull = ranksProb_byEffect)
simuVal = 3  # in the actual case use at least simVal = 1000
result <- sapply(1:length(covariateEffectVec), fwerPowerFdrPower, simu = simuVal,
             null = .5, corr = 0, cv = 0, alpha = .05, groupSize = 100,
             effectType = "continuous", covariateEffectVec = covariateEffectVec,
             datWeightByNull = weightByEffect)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.