View source: R/brapi_post_observationunits.R
brapi_post_observationunits | R Documentation |
Add new Observation Units
brapi_post_observationunits( con = NULL, additionalInfo = list(), externalReferences = "", germplasmDbId = "", germplasmName = "", locationDbId = "", locationName = "", observationUnitName = "", observationUnitPUI = "", observationUnitPosition = list(), programDbId = "", programName = "", seedLotDbId = "", studyDbId = "", studyName = "", treatments = "", trialDbId = "", trialName = "" )
con |
list; required: TRUE; BrAPI connection object |
additionalInfo |
list; required: FALSE; Additional arbitrary information. If provided use the following construct list(additionalProp1 = "string", additionalProp2 = "string", additionalProp3 = "string"). The Examples section shows an example on how to construct the
|
externalReferences |
data.frame; required: FALSE; A data.frame of
external reference ids. These are references to this piece of data in an
external system. Could be a simple string or a URI. The
The Examples section shows an example of how to construct the
|
germplasmDbId |
character; required: FALSE; Unique germplasm (accession) identifier for the observation unit. |
germplasmName |
character; required: FALSE; Human readable germplasm name for the observation unit. It can be the preferred name and does not have to be unique. |
locationDbId |
character; required: FALSE; The identifier, which uniquely identifies a location, associated with this study. |
locationName |
character; required: FALSE; The human readable name of a location associated with this study. |
observationUnitName |
character; required: FALSE; A human readable name for an observation unit. |
observationUnitPUI |
character; required: FALSE; A Permanent Unique Identifier for an observation unit. MIAPPE V1.1 (DM-72) External ID - Identifier for the observation unit in a persistent repository, comprises the name of the repository and the identifier of the observation unit therein. The EBI Biosamples repository can be used. URI are recommended when possible. |
observationUnitPosition |
list; required: FALSE; All positional and
layout information related to this Observation Unit. MIAPPE V1.1 (DM-73)
Spatial distribution - Type and value of a spatial coordinate
(georeference or relative) or level of observation (plot 45, subblock 7,
block 2) provided as a key-value pair of the form type:value. Levels of
observation must be consistent with those listed in the Study section. The
The Examples section shows an example of how to construct the
|
programDbId |
character; required: FALSE; The identifier, which uniquely identifies a program. |
programName |
character; required: FALSE; The human readable name of a program. |
seedLotDbId |
character; required: FALSE; The unique identifier for the originating Seed Lot. |
studyDbId |
character; required: FALSE; The identifier, which uniquely identifies a study within the given database server. |
studyName |
character; required: FALSE; The human readable name for a study. |
treatments |
data.frame; required: FALSE; Data.frame of treatments
applied to an observation unit. MIAPPE V1.1 (DM-74) Observation Unit
factor value - List of values for each factor applied to the observation
unit. Each row in the
|
trialDbId |
character; required: FALSE; The identifier, which uniquely identifies a trial. |
trialName |
character; required: FALSE; The human readable name of a trial. |
Add new Observation Units
data.frame
Maikel Verouden
Other brapi-phenotyping:
brapi_get_events()
,
brapi_get_images_imageDbId()
,
brapi_get_images()
,
brapi_get_methods_methodDbId()
,
brapi_get_methods()
,
brapi_get_observationlevels()
,
brapi_get_observations_observationDbId()
,
brapi_get_observations_table()
,
brapi_get_observations()
,
brapi_get_observationunits_observationUnitDbId()
,
brapi_get_observationunits_table()
,
brapi_get_observationunits()
,
brapi_get_ontologies()
,
brapi_get_scales_scaleDbId()
,
brapi_get_scales()
,
brapi_get_search_images_searchResultsDbId()
,
brapi_get_search_observations_searchResultsDbId()
,
brapi_get_search_observationunits_searchResultsDbId()
,
brapi_get_search_variables_searchResultsDbId()
,
brapi_get_traits_traitDbId()
,
brapi_get_traits()
,
brapi_get_variables_observationVariableDbId()
,
brapi_get_variables()
,
brapi_post_images()
,
brapi_post_methods()
,
brapi_post_observations()
,
brapi_post_scales()
,
brapi_post_search_images()
,
brapi_post_search_observations()
,
brapi_post_search_observationunits()
,
brapi_post_search_variables()
,
brapi_post_traits()
,
brapi_post_variables()
,
brapi_put_images_imageDbId_imagecontent()
,
brapi_put_images_imageDbId()
,
brapi_put_methods_methodDbId()
,
brapi_put_observations_observationDbId()
,
brapi_put_observationunits_observationUnitDbId()
,
brapi_put_scales_scaleDbId()
,
brapi_put_traits_traitDbId()
,
brapi_put_variables_observationVariableDbId()
Other Observation Units:
brapi_get_observationlevels()
,
brapi_get_observationunits_observationUnitDbId()
,
brapi_get_observationunits_table()
,
brapi_get_observationunits()
,
brapi_get_search_observationunits_searchResultsDbId()
,
brapi_post_search_observationunits()
,
brapi_put_observationunits_observationUnitDbId()
## Not run: con <- brapi_db()$testserver con[["token"]] <- "YYYY" additionalInfo <- list(dummyData = "TRUE", example = "post_observationunits") externalReferences <- data.frame(referenceID = c("doi:10.155454/12341234", "http://purl.obolibrary.org/obo/ro.owl", "75a50e76"), referenceSource = c("DOI", "OBO Library", "Remote Data Collection Upload Tool")) germplasmDbId <- "germplasm2" germplasmName <- "Tomatillo Fantastico" locationDbId <- "location_01" locationName <- "Location 1" observationUnitName <- "Plot 1" observationUnitPUI <- "doi:10.12345/plot/1a9afc14" ## Create a geoCoordinates list object as element for the ## observationUnitPosition list library(geojsonR) ## Point geometry init <- TO_GeoJson$new() pointGeometry <- list() pointData <- c(-76.46313, # longitude 42.44423, # latitude 123) # altitude pointGeometry[["geometry"]] <- init$Point(data = pointData, stringify = FALSE) pointGeometry[["type"]] <- "Feature" ## ## Polygon geometry with an exterior ring only init <- TO_GeoJson$new() ## Individual polygon points are provided as c(longitude, latitude, altitude) polygonData <- list(list(c(-76.476949, 42.447274, 123), # exterior ring (rectangle) c(-76.474429, 42.447258, 123), c(-76.474428, 42.446193, 123), c(-76.476961, 42.446211, 123), c(-76.476949, 42.447274, 123))) polygonGeometry <- list() polygonGeometry[["geometry"]] <- init$Polygon(data = polygonData, stringify = FALSE) polygonGeometry[["type"]] <- "Feature" ## Create the observationUnitPosition list object observationUnitPosition <- list( entryType = "TEST", geoCoordinates = pointGeometry, observationLevel = list( levelCode = "plot_1", levelName = "plot", levelOrder = 4), observationLevelRelationships = data.frame( levelCode = c("fieldA", "rep1", "block1"), levelName = c("field", "rep", "block"), levelOrder = c(1, 2, 3)), positionCoordinateX = "1", positionCoordinateXType = "PLANTED_ROW", positionCoordinateY = "1", positionCoordinateYType = "PLANTED_INDIVIDUAL" ) programDbId <- "program1" programName <- "The BrAPI Breeding Program" seedLotDbId <- "seed_lot2" studyDbId <- "study1" studyName <- "Paw paw 2013 yield trial" treatments <- data.frame( factor = c("fertilizer", "irrigation"), modality = c("high fertilizer", "low water")) trialDbId <- "trial1" trialName <- "Peru Yield Trial 1" ## Make the POST /observationunits call brapi_post_observationunits( con = con, additionalInfo = additionalInfo, externalReferences = externalReferences, germplasmDbId = germplasmDbId, germplasmName = germplasmName, locationDbId = locationDbId, locationName = locationName, observationUnitName = observationUnitName, observationUnitPUI = observationUnitPUI, observationUnitPosition = observationUnitPosition, programDbId = programDbId, programName = programName, seedLotDbId = seedLotDbId, studyDbId = studyDbId, studyName = studyName, treatments = treatments, trialDbId = trialDbId, trialName = trialName) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.