#' Calculates the pooled single proportion confidence intervals according
#' to Wilson across multiply imputed datasets.
#'
#' \code{pool_prop_wilson} Calculates the pooled single proportion and
#' confidence intervals according to Wald across multiply imputed datasets.
#'
#' @param object An object of class 'mistats' ('Multiply Imputed
#' Statistical Analysis').
#' @param conf.level Confidence level of the confidence intervals.
#'
#' @return The proportion and the 95% Confidence interval according to Wilson.
#'
#' @references Anne Lott & Jerome P. Reiter (2020) Wilson Confidence Intervals
#' for Binomial Proportions With Multiple Imputation for Missing Data,
#' The American Statistician, 74:2, 109-115, DOI: 10.1080/00031305.2018.1473796.
#'
#' @author Martijn Heymans, 2021
#'
#' @seealso \code{\link{with.milist}}, \code{\link{prop_wald}}
#'
#' @examples
#'
#' library(magrittr)
#' lbpmilr %>%
#' df2milist(impvar="Impnr") %>%
#' with(expr=prop_wald(Radiation ~ 1)) %>%
#' pool_prop_wilson()
#'
#' # Same as
#' imp_dat <- df2milist(lbpmilr, impvar="Impnr")
#' ra <- with(imp_dat, expr=prop_wald(Radiation ~ 1))
#' res <- pool_prop_wilson(ra)
#'
#' @export
pool_prop_wilson <- function(object, conf.level=0.95){
if(all(class(object)!="mistats"))
stop("object must be of class 'mistats'")
if(!is.list(object$statistics))
stop("object must be a list")
ra <- data.frame(do.call("rbind", object$statistics))
colnames(ra) <- c("est", "se", "dfcom")
pool_est <- pool_scalar_RR(est=ra$est, se=ra$se,
logit_trans=FALSE,
conf.level = conf.level,
dfcom=ra$dfcom[1])
mean_est <- pool_est$pool_est
t <- pool_est$t
n <- pool_est$dfcom+1
r <- pool_est$r
lower <- ((((2*mean_est) + ((t^2)/n) + (((t^2) * r)/n))/
(2*(1 + ((t^2)/n) + (((t^2)*r)/n)))) -
sqrt(((((2*mean_est) + ((t^2)/n) + (((t^2)*r)/n))^2)/
(4*(1 + ((t^2)/n) + (((t^2)*r)/n))^2)) -
((mean_est^2)/(1 + ((t^2)/n) + (((t^2)*r)/n)))))
upper <- ((((2*mean_est) + ((t^2)/n) + (((t^2) * r)/n))/
(2*(1 + ((t^2)/n) + (((t^2)*r)/n)))) +
sqrt(((((2*mean_est) + ((t^2)/n) + (((t^2)*r)/n))^2)/
(4*(1 + ((t^2)/n) + (((t^2)*r)/n))^2)) -
((mean_est^2)/(1 + ((t^2)/n) + (((t^2)*r)/n)))))
output <- matrix(round(c(mean_est, lower, upper), 5), 1, 3)
colnames(output) <- c("Prop", "CI L Wilson", "CI U Wilson")
class(output) <- 'mipool'
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.