Description Usage Arguments Details Value Author(s) References See Also
Interface for fitting penalized regression models for binary of survival endpoint using glmnet, conforming to the requirements for argument fit.fun in peperr call.
1 | fit.glmnet(response, x, cplx, ...)
|
response |
a survival object (with |
x |
|
cplx |
lambda penalty value. |
... |
additional arguments passed to |
Function is basically a wrapper for glmnet of package glmnet.
Note that only penalized Cox PH (family="cox") and logistic regression models (family="binomial") are sensible for prediction error
evaluation with package peperr.
glmnet object
Thomas Hielscher \ t.hielscher@dkfz.de
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
Regularization Paths for Generalized Linear Models via Coordinate
Descent, http://www.stanford.edu/~hastie/Papers/glmnet.pdf
Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
http://www.jstatsoft.org/v33/i01/
Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011)
Regularization Paths for Cox's Proportional Hazards Model via
Coordinate Descent, Journal of Statistical Software, Vol. 39(5)
1-13
http://www.jstatsoft.org/v39/i05/
Porzelius, C., Binder, H., and Schumacher, M. (2009)
Parallelized prediction error estimation for evaluation of high-dimensional models,
Bioinformatics, Vol. 25(6), 827-829.
Sill M., Hielscher T., Becker N. and Zucknick M. (2014), c060: Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models, Journal of Statistical Software, Volume 62(5), pages 1–22.
http://www.jstatsoft.org/v62/i05/
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.