Description Usage Arguments Details Value Author(s) See Also Examples
Evaluate the area under the ROC curve for a fitted model on new data. To be used as argument aggregation.fun in peperr call. 
| 1 2 | 
| full.data | passed from  | 
| response | vector of binary response. | 
| x | 
 | 
| model | model fitted as returned by a  | 
| cplx | passed from  | 
| type | character. | 
| fullsample.attr | passed from  | 
| ... | additional arguments, passed to  | 
Area under the ROC curve is calculated based on internal glmnet:::auc function from package glmnet.
Scalar, indicating the area under the ROC curve.
Thomas Hielscher \ t.hielscher@dkfz.de
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | ## Not run: 
# binomial model - classification
library(c060)
library(gridExtra)
library(ggplot2)
set.seed(0815)
x <- matrix(rnorm(100*20),100,20)
y <- sample(0:1,100,replace=TRUE)
peperr_obj <- peperr(response=y, x=x, fit.fun=fit.glmnet, args.fit=list(family="binomial"),
           complexity=complexity.glmnet, args.complexity=list(nfolds=10, family="binomial"),
           trace=F, RNG="fixed",seed=0815,
#           aggregation.fun=c060:::aggregation.misclass,                  
#           aggregation.fun=c060:::aggregation.brier,                  
           aggregation.fun=c060:::aggregation.auc,                  
           indices=resample.indices(n=nrow(x), sample.n = 100, method = "sub632"))
tmp   <- data.frame(grp="",error=unlist(peperr_obj$sample.error)) 
errs  <- data.frame(error=c(perr(peperr_obj,"resample"),
         perr(peperr_obj,"632p"),perr(peperr_obj,"app"),
         perr(peperr_obj,"nullmodel")), col  = c("red","blue","green","brown"),
         row.names=c("mean\nout-of-bag",".632plus","apparent","null model"))
                 
p     <- ggplot(tmp, aes(grp,error))
pg    <- p + geom_boxplot(outlier.colour = rgb(0,0,0,0), outlier.size=0) +
         geom_jitter(position=position_jitter(width=.1)) + 
         theme_bw() + scale_y_continuous("AUC") +  scale_x_discrete("") +
         geom_hline(aes(yintercept=error, colour=col), data=errs, show_guide=T) + 
         scale_colour_identity("error type", guide = "legend", breaks=errs$col,
         labels=rownames(errs)) +
         ggtitle("AUC \n in bootstrap samples ")                       
p2     <- ggplot(data.frame(complx=peperr_obj$sample.complexity), aes(x=complx))
pg2    <- p2 + geom_histogram(binwidth = 0.02, fill = "white", colour="black") +
          theme_bw()+  xlab(expression(lambda)) +
          ylab("frequency") + 
          geom_vline(xintercept=peperr_obj$selected.complexity, colour="red") + 
          ggtitle("Selected complexity \n in bootstrap samples") +
          ggplot2::annotate("text", x = 0.12, y = -0.5,
          label = "full data", colour="red", size=4)
grid.arrange(pg2, pg, ncol=2)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.