library(priorsense)
test_that("powerscale_derivative gives 0 for uniform log_component", {
expect_equal(
priorsense::powerscale_derivative(
x = seq(0, 1, 0.01),
log_component = log(rep(
1 / length(seq(0, 1, 0.01)),
length(seq(0, 1, 0.01))
)),
quantity = "mean"),
c(psens_mean = 0)
)
expect_equal(
priorsense::powerscale_derivative(
x = seq(0, 1, 0.01),
log_component = log(rep(
1 / length(seq(0, 1, 0.01)),
length(seq(0, 1, 0.01))
)),
quantity = "sd"),
c(psens_sd = 0)
)
expect_equal(
priorsense::powerscale_derivative(
x = seq(0, 1, 0.01),
log_component = log(rep(
1 / length(seq(0, 1, 0.01)),
length(seq(0, 1, 0.01))
)),
quantity = "var"),
c(psens_var = 0)
)
})
test_that("powerscale_derivative gives warning if not using mean, sd or var", {
expect_warning(
priorsense::powerscale_derivative(
x = seq(0, 1, 0.01),
log_component = log(1 + seq(0, 1, 0.01)),
quantity = "median"),
"Power-scaling derivative for medians or quantiles is zero. Consider using powerscale_gradients instead."
)
expect_warning(
priorsense::powerscale_derivative(
x = seq(0, 1, 0.01),
log_component = log(1 + seq(0, 1, 0.01)),
quantity = "q95"),
"Power-scaling derivative for medians or quantiles is zero. Consider using powerscale_gradients instead."
)
expect_warning(
priorsense::powerscale_derivative(
x = seq(0, 1, 0.01),
log_component = log(1 + seq(0, 1, 0.01)),
quantity = "mad"),
"Power-scaling derivative for medians or quantiles is zero. Consider using powerscale_gradients instead."
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.