View source: R/calculate_SKAT_empirical_p.R
calculate_SKAT_empirical_p | R Documentation |
Produce permuted p-values or empirical p-value for SKAT
calculate_SKAT_empirical_p(
Z,
n_permutations,
null_model,
missing_cutoff = 0.15,
return_all_p_vals = FALSE,
...
)
Z |
Matrix with row for each genotype in the SNP dataset, columns for each SNP in the SNP window of interest, and numeric values of 0, 1, 2 indicating number of alternative alleles for each SNP in each genotype (or NA for indels or missing data) |
n_permutations |
Integer indicating the number of permutations used to calculate empirical p-values |
null_model |
Object generated by |
missing_cutoff |
A numeric threshold representing the minimum desired missing rate; missing rate is defined for each SNP as the proportion of genotypes missing data for the given SNP. Imputation to mean is performed , either by 'pre_allocate' or 'SKAT' itself, for all remaining missing values |
return_all_p_vals |
If 'TRUE', will return a vector of all permuted p-values (useful for when not all permutations can fit into memory available for a single thread); if 'FALSE', will calculate and return the empirical p-value |
... |
Additional parameters passed on to |
An empirical p-value or vector of permuted p-values, depending on the user-submitted argument for 'return_all_p' as described above
data("small_pre_allocated_windows")
sample_null_model <- SKAT::SKAT_Null_Model(
small_phenodata ~ 1 + as.matrix(small_covariates), out_type="C",
n.Resampling = 1000)
calculate_SKAT_empirical_p(
Z = small_pre_allocated_windows[[1]][[2]],
n_permutations = 1000,
null_model = sample_null_model,
return_all_p = FALSE)
calculate_SKAT_empirical_p(
Z = small_pre_allocated_windows[[1]][[2]],
n_permutations = 1000,
null_model = sample_null_model,
return_all_p = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.