Description Usage Arguments Details Value Examples
View source: R/summarize_for_pca.R
Takes data from calc_thresholds
and summarizes the thresholds to be used to find
most extreme climate futures from principal components analysis (PCA)
1 2 3 4 5 6 7 | summarize_for_pca(
SiteID,
data = NULL,
past_years = c(1950, 2000),
future_year = 2040,
directory = tempdir()
)
|
SiteID |
chosen name to use in file names, attributes, and directories. (character) |
data |
Default dataset to use for the .csv files this function will create.
Follow vignette for example dataset creation. This should be the output of
the |
past_years |
years to base past data off of. Cannot be any earlier than 1950. Must be written as c(past_start, past_end). Defaults to 1950:2000 (numeric) |
future_year |
year to center changes from historical data around. Defaults to 2040 (numeric) |
directory |
where to save files to. Per CRAN guidelines, this defaults to a temporary directory and files created will be lost after R session ends. Specify a path to retain files. |
*For advanced users only.
A csv that has summarized threshold values across all years for all models.
This csv can be directly used to calculate model selection by pca using the cf_pca
function.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | ## Not run:
# Generate sample data
data <- data.frame(
date = sample(seq(as.Date('1950/01/01'), as.Date('2099/12/31'), by="day"), 1000),
yr = rep(c(1980, 2040, 1980, 2040, 1980, 2040, 1980, 2040, 1980, 2040, 1980, 2040, 1980,
2040, 1980, 2040, 1980, 2040, 1980, 2040), each = 50),
month = rep(c(1:10), each = 100),
quarter = rep(rep(c("DJF", "MAM", "JJA", "SON"), each = 250)),
gcm = rep(c("bcc-csm1-1.rcp45", "BNU-ESM.rcp45", "CanESM2.rcp85", "CCSM4.rcp45",
"CSIRO-Mk3-6-0.rcp45"), each = 200),
precip = rnorm(1000),
tmin = rnorm(1000),
tmax = rnorm(1000),
rhmax = rnorm(1000),
rhmin = rnorm(1000),
tavg = rnorm(1000),
heat_index = rnorm(1000),
heat_index_ec = rnorm(1000),
heat_index_dan = rnorm(1000),
temp_over_95_pctl = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
temp_over_99_pctl = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
temp_over_95_pctl_length = as.logical(sample(x = c("TRUE","FALSE"), size = 1000,
replace = TRUE)),
temp_under_freeze = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
temp_under_freeze_length = as.logical(sample(x = c("TRUE","FALSE"), size = 1000,
replace = TRUE)),
temp_under_5_pctl = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
no_precip = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
no_precip_length = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
precip_95_pctl = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
precip_99_pctl = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
precip_moderate = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
precip_heavy = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
freeze_thaw = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
gdd = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
gdd_count = rnorm(1000),
not_gdd_count = rnorm(1000),
frost = as.logical(sample(x = c("TRUE","FALSE"), size = 1000, replace = TRUE)),
grow_length = rnorm(1000),
units = rep("imperial", each = 1000)
)
summarize_for_pca("SCBL", data = data)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.