daarem.lasso: NIDAAREM acceleration of penalized regression

Description Usage Arguments Examples

View source: R/daaremlasso.R

Description

Uses the NIDAAREM procedure to accelerate proximal gradient algorithms for fitting l1-penalized regression.

Usage

1
daarem.lasso(par, X, y, lambda, stplngth = NULL, nesterov.init = FALSE, family = c("gaussian", "binomial"), control = list())

Arguments

par

initial value of the parameters

X

the n x p design matrix

y

vector of responses (should have length n)

lambda

the penalty term

stplngth

The step length used in the proximal gradient scheme.

nesterov.init

A logical indicator. If true, the NIDAAREM algorithm is used. If false, the DAAREM algorithm is used.

family

The link function used in the regression. Can be either gaussian or binomial.

control

A list of additional control parameters.

Examples

1
a = 2

nchenderson/nidaarem documentation built on Feb. 19, 2020, 12:45 p.m.