Description Usage Arguments Value Author(s) Examples
View source: R/antsBOLDNetworkAnalysis.R
An implementation of a network analysis framework for BOLD data. We expect that you mapped a label image ( e.g. aal ) to the 3D BOLD space. We build a network and graph metrics from this image and these labels based on the user-defined graph density level.
1 2 3 4 5 6 7 8 9 10 11 12 13  | 
bold | 
 input 4D image  | 
mask | 
 antsImage defines areas of interest  | 
labels | 
 antsImage defines regions of interest ie a parcellation  | 
motion | 
 motion parameters - if missing, will estimate from data  | 
gdens | 
 graph density applied to network covariance matrix  | 
threshLo | 
 lower threshold for the label image  | 
threshHi | 
 upper threshold for the label image  | 
freqLo | 
 lower frequency cutoff  | 
freqHi | 
 upper frequency cutoff  | 
winsortrim | 
 winsorize the bold signal by these values eg 0.02  | 
throwaway | 
 this number of initial bold volumes  | 
list of outputs
BB Avants
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  | # none yet - this is not very well tested with recent ANTsR
## Not run: 
myimg <- antsImageRead(getANTsRData( "ch2" ), 3)
mylab <- antsImageRead(getANTsRData( "ch2a" ), 3)
boldfn <- getANTsRData( "pcasl" )
bold <- antsImageRead( boldfn , 4 )
avgbold <- getAverageOfTimeSeries( bold )
breg <- antsRegistration( avgbold, myimg, typeofTransform = c("AffineFast") )
warpedParcellation <- antsApplyTransforms( avgbold, mylab,
    transformlist=breg$fwdtransforms, interpolator="NearestNeighbor" )
mask <- getMask( avgbold )
warpedParcellation = maskImage(warpedParcellation, img.mask = mask)
old = NA;
labels = warpedParcellation; 
gdens = 0.2; threshLo = 1; threshHi = 90;
freqLo = 0.01; freqHi = 0.1; winsortrim = 0.02;
result <- antsBOLDNetworkAnalysis( bold=bold, mask=mask, warpedParcellation )
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.