Description Usage Arguments Value Details Author(s) Examples
A function that performs LRLDA on the class-centered data. Same as class-conditional PCA.
1  | lol.project.lrlda(X, Y, r, xfm = FALSE, xfm.opts = list(), robust = FALSE, ...)
 | 
X | 
 
  | 
Y | 
 
  | 
r | 
 the rank of the projection.  | 
xfm | 
 whether to transform the variables before taking the SVD. 
  | 
xfm.opts | 
 optional arguments to pass to the   | 
robust | 
 whether to use a robust estimate of the covariance matrix when taking PCA. Defaults to   | 
... | 
 trailing args.  | 
A list containing the following:
 | 
 
  | 
 | 
 the eigen values associated with the eigendecomposition.  | 
 | 
 
  | 
 | 
 
  | 
 | 
 
  | 
 | 
 
  | 
 | 
 
  | 
For more details see the help vignette:
vignette("lrlda", package = "lolR")
Eric Bridgeford
1 2 3 4  | library(lolR)
data <- lol.sims.rtrunk(n=200, d=30)  # 200 examples of 30 dimensions
X <- data$X; Y <- data$Y
model <- lol.project.lrlda(X=X, Y=Y, r=2)  # use lrlda to project into 2 dimensions
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.