tests/testthat/test-glm_weightit.R

test_that("No weights", {
  skip_if_not_installed("sandwich")
  skip_if_not_installed("brglm2")

  eps <- if (capabilities("long.double")) 1e-5 else 1e-1

  test_data <- readRDS(test_path("fixtures", "test_data.rds"))

  expect_no_condition({
    fit0 <- glm_weightit(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                         data = test_data, family = binomial)
  })

  #M-estimation for glm
  expect_no_condition({
    fit <- glm_weightit(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                        data = test_data, family = binomial, vcov = "HC0")
  })

  expect_equal(coef(fit0), coef(fit), tolerance = eps)
  expect_equal(vcov(fit0), vcov(fit), tolerance = eps)

  fit_g <- glm(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
               data = test_data, family = binomial)
  expect_equal(coef(fit0), coef(fit_g), tolerance = eps)
  expect_equal(vcov(fit0), sandwich::sandwich(fit_g),
               tolerance = eps)

  #Offset
  set.seed(123)
  off <- runif(nrow(test_data))

  expect_no_condition({
    fit <- glm_weightit(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9) + offset(off),
                        data = test_data, family = binomial)
  })

  expect_not_equal(coef(fit0), coef(fit), tolerance = eps)

  fit_g <- glm(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9) + offset(off),
               data = test_data, family = binomial)
  expect_equal(coef(fit), coef(fit_g), tolerance = eps)
  expect_equal(vcov(fit), sandwich::sandwich(fit_g),
               tolerance = eps)

  #Cluster-robust SEs
  clus <- sample(1:50, nrow(test_data), replace = TRUE)

  expect_no_condition({
    fit <- glm_weightit(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                        data = test_data, family = binomial, cluster = clus)
  })

  expect_equal(coef(fit0), coef(fit), tolerance = eps)

  fit_g <- glm(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
               data = test_data, family = binomial)
  expect_equal(coef(fit), coef(fit_g), tolerance = eps)
  expect_equal(vcov(fit), sandwich::vcovCL(fit_g, cluster = clus, type = "HC0"),
               tolerance = eps)

  #BR
  expect_no_condition({
    fit <- glm_weightit(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                        data = test_data, family = binomial("probit"), br = TRUE)
  })

  fit_g <- glm(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
               data = test_data, family = binomial("probit"),
               method = brglm2::brglmFit)

  expect_equal(coef(fit), coef(fit_g), tolerance = eps)
  expect_equal(vcov(fit), sandwich::sandwich(fit_g),
               tolerance = eps * 1e3)

  expect_equal(vcov(fit, cluster = clus),
               sandwich::vcovCL(fit_g, cluster = clus, type = "HC0"),
               tolerance = eps * 1e3)

  #Test error for missingness
  expect_error({
    fit0 <- glm_weightit(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                         data = transform(test_data, Y_B = c(NA, Y_B[-1L])),
                         family = binomial)
  }, "missing values", ignore.case = TRUE)

  expect_error({
    fit0 <- glm_weightit(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                         data = transform(test_data, X1 = c(NA, X1[-1L])),
                         family = binomial)
  }, "missing values", ignore.case = TRUE)

  #Test using sandwich functions
  expect_no_condition({
    fit0 <- glm_weightit(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                         data = test_data, family = binomial)
  })

  expect_equal(vcov(fit0), sandwich::sandwich(fit0),
               tolerance = eps)
})

test_that("Binary treatment", {
  skip_if_not_installed("fwb")

  eps <- if (capabilities("long.double")) 1e-5 else 1e-1

  test_data <- readRDS(test_path("fixtures", "test_data.rds"))

  expect_no_condition({
    W <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9,
                   data = test_data, method = "glm", estimand = "ATE",
                   include.obj = TRUE)
  })

  expect_no_condition({
    fit0 <- glm_weightit(Y_C ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                        data = test_data, weightit = W)
  })

  #M-estimation for glm
  expect_no_condition({
    fit <- glm_weightit(Y_C ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                        data = test_data, weightit = W,
                        vcov = "asympt")
  })

  expect_equal(coef(fit0), coef(fit), tolerance = eps)
  expect_equal(vcov(fit0), vcov(fit), tolerance = eps)

  expect_no_condition({
    fit <- glm_weightit(Y_C ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                        data = test_data, weightit = W,
                        vcov = "HC0")
  })

  expect_equal(coef(fit0), coef(fit), tolerance = eps)
  expect_not_equal(vcov(fit0), vcov(fit), tolerance = eps)

  set.seed(123)
  expect_no_condition({
    fit <- glm_weightit(Y_C ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                        data = test_data, weightit = W,
                        vcov = "FWB", R = 50)
  })

  expect_equal(coef(fit0), coef(fit), tolerance = eps)
  expect_not_equal(vcov(fit0), vcov(fit), tolerance = eps)

  set.seed(123)
  expect_no_condition({
    fit_ <- glm_weightit(Y_C ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                        data = test_data, weightit = W,
                        vcov = "FWB", R = 50,
                        fwb.args = list(wtype = "mammen"))
  })

  expect_equal(coef(fit), coef(fit_), tolerance = eps)
  expect_not_equal(vcov(fit), vcov(fit_), tolerance = eps)

  expect_no_condition({
    fit <- glm_weightit(Y_C ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                        data = test_data, weightit = W,
                        vcov = "BS", R = 50)
  })

  expect_equal(coef(fit0), coef(fit), tolerance = eps)
  expect_not_equal(vcov(fit0), vcov(fit), tolerance = eps)

  #Test error for missingness
  expect_error({
    fit0 <- glm_weightit(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                         data = transform(test_data, Y_B = c(NA, Y_B[-1L])),
                         family = binomial)
  }, "missing values", ignore.case = TRUE)

  expect_error({
    fit0 <- glm_weightit(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                         data = transform(test_data, X1 = c(NA, X1[-1L])),
                         family = binomial)
  }, "missing values", ignore.case = TRUE)

  #Test using sandwich functions
  expect_no_condition({
    fit0 <- glm_weightit(Y_B ~ A * (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9),
                         data = test_data, weightit = W, family = binomial)
  })

  expect_equal(vcov(fit0),
               sandwich::sandwich(fit0),
               tolerance = eps)

  expect_equal(vcov(fit0, type = "HC0"),
               sandwich::sandwich(fit0, asympt = FALSE),
               tolerance = eps)
})
ngreifer/WeightIt documentation built on March 6, 2025, 2:04 a.m.