test_that("URI, binary treatment", {
skip_if_not_installed("estimatr")
data("lalonde")
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat")
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC3")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, ATE", {
skip_if_not_installed("marginaleffects")
skip_if_not_installed("estimatr")
data("lalonde")
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
estimand = "ATE")
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + race + married + re74 + re75),
data = lalonde)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
vcov = "HC3")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
### estimatr output
fl <- estimatr::lm_lin(re78 ~ treat,
~ age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC3")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(fl)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, ATT", {
skip_if_not_installed("marginaleffects")
data("lalonde")
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
estimand = "ATT")
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + race + married + re74 + re75),
data = lalonde)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
vcov = "HC3",
newdata = subset(lalonde, treat == 1))
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
})
test_that("MRI, binary treatment, CATE", {
skip_if_not_installed("marginaleffects")
skip_if_not_installed("estimatr")
data("lalonde")
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
estimand = "CATE", target = lalonde[1,])
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + race + married + re74 + re75),
data = lalonde)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
newdata = lalonde[1,],
vcov = "HC3")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
})
test_that("MRI, binary treatment, CATE, target.weights", {
skip_if_not_installed("marginaleffects")
skip_if_not_installed("estimatr")
data("lalonde")
llsub <- transform(subset(lalonde, married == 0),
tw = runif(sum(married == 0)))
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
estimand = "CATE", target = llsub, target.weights = llsub$tw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + race + married + re74 + re75),
data = lalonde)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
newdata = llsub,
wts = llsub$tw,
vcov = "HC3")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
})
test_that("URI, binary treatment, fixed effects", {
skip_if_not_installed("estimatr")
data("lalonde")
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
fixef = ~race)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, fixed_effects = ~race,
se_type = "HC3")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, ATE, fixed effects", {
skip_if_not_installed("marginaleffects")
data("lalonde")
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
fixef = ~race)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### URI + covariate version
l2 <- lmw(re78 ~ treat * (age + education + married + re74 + re75) + race,
data = lalonde, method = "URI", treat = "treat")
est2 <- weighted_mean_diff(lalonde$re78, lalonde$treat, l2$weights)
expect_equal_est(est, est2)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + married + re74 + re75) + race,
data = lalonde)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
vcov = "HC3")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
})
test_that("URI, binary treatment, 2SLS", {
skip_if_not_installed("estimatr")
data("lalonde")
expect_no_condition(
l <- lmw_iv(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
iv = ~Ins)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, robust = "HC1")
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::iv_robust(re78 ~ treat + age + education + race + married + re74 + re75 |
Ins + age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC1")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("URI, binary treatment, 2SLS, fixed effects, CR SEs", {
skip_if_not_installed("estimatr")
data("lalonde")
expect_no_condition(
l <- lmw_iv(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
iv = ~Ins, fixef = ~race)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, robust = "HC1", cluster = ~race)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::iv_robust(re78 ~ treat + age + education + married + re74 + re75 |
Ins + age + education + married + re74 + re75,
data = lalonde, fixed_effects = ~race,
se_type = "stata", cluster = race)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, 2SLS", {
skip_if_not_installed("estimatr")
data("lalonde")
expect_no_condition(
l <- lmw_iv(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
iv = ~Ins)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, robust = "HC1")
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::iv_robust(re78 ~ treat * (scale(age) + scale(education) + scale(married) + scale(re74) + scale(re75)) |
Ins * (scale(age) + scale(education) + scale(married) + scale(re74) + scale(re75)),
data = lalonde, se_type = "HC1")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("URI, multi-category treatment", {
skip_if_not_installed("estimatr")
data("lalonde")
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat_multi",
contrast = c("3", "1"))
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "3", l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y3-Y1]", "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC3")
expect_equal_est(s$coefficients["E[Y2-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi2", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
expect_equal_est(s$coefficients["E[Y3-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi3", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, multi-category treatment, ATE", {
skip_if_not_installed("estimatr")
data("lalonde")
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat_multi")
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "3", l$weights,
subset = lalonde$treat_multi %in% c("2", "3"))
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y3-Y2]", "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_lin(re78 ~ treat_multi,
~ age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC3")
expect_equal_est(s$coefficients["E[Y2-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi2", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
expect_equal_est(s$coefficients["E[Y3-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi3", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, multi-category treatment, ATT", {
skip_if_not_installed("marginaleffects")
data("lalonde")
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat_multi",
estimand = "ATT", focal = "1")
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "1", l$weights,
subset = lalonde$treat_multi %in% c("1", "3"))
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y1-Y3]", "Estimate"],
est)
### avg_comparisons() output
f <- lm(re78 ~ treat_multi * (age + education + race + married + re74 + re75),
data = lalonde)
ac <- marginaleffects::avg_predictions(f, variables = "treat_multi",
vcov = "HC3",
newdata = subset(lalonde, treat_multi == "1"),
hypothesis = "pairwise")
expect_equal_est(s$coefficients[c("E[Y1-Y2]", "E[Y1-Y3]", "E[Y2-Y3]"), c("Estimate", "Std. Error", "t value")],
as.matrix(ac[1:3, c("estimate", "std.error", "statistic")]))
})
test_that("URI, multi-category treatment, fixed effects", {
skip_if_not_installed("estimatr")
data("lalonde")
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat_multi",
contrast = c("3", "1"), fixef = ~race)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "3", l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y3-Y1]", "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat_multi + age + education + married + re74 + re75,
data = lalonde, se_type = "HC3", fixed_effects = ~race)
expect_equal_est(s$coefficients["E[Y2-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi2", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
expect_equal_est(s$coefficients["E[Y3-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi3", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.